예제 #1
0
def test(epoch):
    global best_acc
    net.eval()
    test_loss = 0
    correct = 0
    total = 0
    for batch_idx, (inputs, targets) in enumerate(testloader):
        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda()
        inputs, targets = Variable(inputs, volatile=True), Variable(targets)
        outputs = net(inputs)
        loss = criterion(outputs, targets)

        test_loss += loss.data[0]
        _, predicted = torch.max(outputs.data, 1)
        total += targets.size(0)
        correct += predicted.eq(targets.data).cpu().sum()

        progress_bar(
            batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' %
            (test_loss /
             (batch_idx + 1), 100. * correct / total, correct, total))

    test_accuracy_list[epoch] = 100. * correct / total
    acc = 100. * correct / total
    if acc > best_acc:
        dump_acc_record(acc, net, use_cuda, epoch, args)
        dump_record(train_accuracy_list, test_accuracy_list,
                    learning_rate_list, loss_function_list, args)
        best_acc = acc
예제 #2
0
                        default=0,
                        type=float,
                        help='incorrect_penalty')
    parser.add_argument('--normalize',
                        action='store_true',
                        help='normalize the rewards')
    parser.add_argument('--epochs_to_train', default=300, type=int)
    args = parser.parse_args()

    use_cuda = torch.cuda.is_available()
    trainloader, testloader, _ = transform_dataset(batch_size=400)

    # Model
    storedNet, trainList = _initilization_(args, use_cuda)
    (net, best_acc, start_epoch), (train_accuracy_list, test_accuracy_list,
                                   learning_rate_list,
                                   loss_function_list) = storedNet, trainList

    criterion = parser_loss_function(args=args)
    optimizer = optim.SGD(net.parameters(),
                          lr=args.lr,
                          momentum=0.9,
                          weight_decay=5e-4)

    # Training
    for epoch in range(start_epoch, start_epoch + args.epochs_to_train):
        train(epoch)
        test(epoch)
        dump_record(train_accuracy_list, test_accuracy_list,
                    learning_rate_list, loss_function_list, args)
예제 #3
0
        u16     key_sz;
        char    key[];
};
'''

filename = sys.argv[1]
fd = open(filename, 'rb')
data = fd.read()

p = 0
p += utils.dump_record(
    'index header',
    [
        'magic', 'last_record_logno', 'last_record_offset', 'keys_stored',
        'checksum'
    ],
    "<IiQQI",
    data,
    p,
    magic=0x43211234,
)

i = itertools.count(1)
while p < len(data):
    p += utils.dump_record(
        'item %i' % i.next(),
        [
            'magic', 'checksum', 'logno', 'value_offset', 'key_sz', 'r',
            'value_sz'
        ],
        "<IIiQHHI",
예제 #4
0
struct ydb_value_record{
        u32     checksum;
};
'''

filename = sys.argv[1]
fd = open(filename, 'rb')
data = fd.read()


p = 0
i = itertools.count(1)
while p < len(data):
    p += utils.dump_record('record',
            ['magic', 'checksum', 'flags', 'key_sz', 'value_sz', 'key'],
            "<IIHHI", data, p,
            magic = 0x7DB5EC5D,
        )

    
    p += utils.dump_record('item %i' % i.next(),
            ['magic', 'checksum', 'logno', 'value_offset', 'key_sz', 'r','value_sz'],
            "<IIiQHHI", data, p,
            indent=4,
            magic = 0x12344321,
        )




예제 #5
0
        u64     value_offset;
        u32     value_sz;

        u16     key_sz;
        char    key[];
};
'''

filename = sys.argv[1]
fd = open(filename, 'rb')
data = fd.read()


p = 0
p += utils.dump_record('index header', 
        ['magic', 'last_record_logno', 'last_record_offset', 'keys_stored', 'checksum'],
        "<IiQQI", data, p,
        magic = 0x43211234,
    )

i = itertools.count(1)
while p < len(data):
    p += utils.dump_record('item %i' % i.next(),
            ['magic', 'checksum', 'logno', 'value_offset', 'key_sz', 'r','value_sz'],
            "<IIiQHHI", data, p,
            indent=4,
            key_len = 'key_sz',
            magic = 0x12344321,
        )