def evaluate_single(L, filling, bond_dim, correlation_type): ## Get filenames fname = utils.find_resfile(L, filling, bond_dim) if fname is None: print 'No data available for L={}, n={}, M={}, {}'.format(L, filling, bond_dim, correlation_type) return None, None ## Get correlation matrix corr = compute(fname) if corr is None: print 'No data available for L={}, n={}, M={}, {}'.format(L, filling, bond_dim, correlation_type) return None, None if isinstance(correlation_type, utils.FixedStart): start_site = correlation_type.start y = corr.y[start_site, start_site+1:] x = np.arange(1, len(y)+1, dtype=float) d = np.column_stack([x, y]) props = deepcopy(corr.props) elif isinstance(correlation_type, utils.Averaged): shifts = range(-5, 6) x,y = average_around_middle(corr.y, corr.props['L'], shifts) d = np.column_stack([x, y]) props = deepcopy(corr.props) props['correlation_type'] = correlation_type return d, props
def evaluate_single(L, filling, bond_dim): ## Get filenames fname = utils.find_resfile(L, filling, bond_dim) if fname is None: print 'No data available for L={}, n={}, M={}'.format(L, filling, bond_dim) return None, None dens = compute(fname) d = np.column_stack([dens.x,dens.y]) props = dens.props return d, props