for i in range(0, 1000):

    #Gerando funcao aleatoria

    func = Function()
    # func.set(1, 0)
    x0 = uniform(-1,1)
    y0 = uniform(-1,1)
    x1 = uniform(-1,1)
    y1 = uniform(-1,1)
    func.buildFromPoints( x0, y0, x1, y1)
    # func._print()

    #Gerando pontos aleatorios com base na funcao
    X = generatePoints(100)
    y = generateY(func, X)

    #Treinando modelo com perceptron
    perc = Perceptron()
    perc.train(X, y)

    # print( 'Iterations: ', perc.iterations)
    iterations.append(perc.iterations) 


       
    #Plotando dados na amostra de treinamento
    xs = [ x[0] for x in X]
    ys = [ x[1] for x in X]

예제 #2
0

errors = []
for iter in range(0, 1000):
    func = Function()
    x0 = uniform(-1, 1)
    y0 = uniform(-1, 1)
    x1 = uniform(-1, 1)
    y1 = uniform(-1, 1)
    func.buildFromPoints(x0, y0, x1, y1)
    # func._print()

    #Gerando pontos aleatorios com base na funcao
    X = generatePoints(100)
    X_with_x0 = [[1] + x for x in X]  ##adicionando bias
    y = generateNoise(generateY(func, X))

    # print(y)

    perc = PocketPLA()
    perc.train(X, y, MAX_ITERATIONS=50)

    #gerando dados fora da amostra de treino
    X = generatePoints(1000)
    X_with_x0 = [[1] + x for x in X]  ##adicionando bias
    y = generateY(func, X)  #generateNoise( generateY(func, X) )

    # plot(X,y,perc,func)

    #Calculando Erro Fora da amostra
    errorCount = 0