next_state = utils.state_gen(state_in, action, obs) # Go to next state reward = obs # Reward total_rewards += reward # Total Reward exp_memory.add( (state_in, action, reward, next_state)) # Add in exp memory state_in = next_state history_input = next_state if (time > state_size or episode != 0): # If sufficient minibatch is available batch = exp_memory.sample(batch_size) # Sample without replacement states = utils.get_states( batch) # Get state,action,reward and next state from memory actions = utils.get_actions(batch) rewards = utils.get_rewards(batch) next_state = utils.get_next_states(batch) feed_dict = {q_network.input_in: next_state} actuals_Q = sess.run( q_network.out_layer, feed_dict=feed_dict) # Get the Q values for next state actuals = rewards + gamma * np.max( actuals_Q, axis=1) # Make it actuals with discount factor actuals = actuals.reshape(batch_size) # Feed in here to get loss and optimise it loss, _ = sess.run( [q_network.Q_loss, q_network.opt], feed_dict={
def adversarial_train(model_dict, optimizer_dict, scheduler_dict, dis_dataloader_params, vocab_size, positive_file, negative_file, num_batches, gen_train_num=1, dis_train_epoch=5, dis_train_num=3, max_norm=5.0, rollout_num=4, use_cuda=False, temperature=1.0): ''' Get models, optimizers and schedulers. ''' generator = model_dict["generator"] discriminator = model_dict["discriminator"] worker = generator.worker manager = generator.manager m_optimizer = optimizer_dict["manager"] w_optimizer = optimizer_dict["worker"] d_optimizer = optimizer_dict["discriminator"] m_optimizer.zero_grad() w_optimizer.zero_grad() m_lr_scheduler = scheduler_dict["manager"] w_lr_scheduler = scheduler_dict["worker"] d_lr_scheduler = scheduler_dict["discriminator"] ''' Adversarial train for generator. ''' for _ in range(gen_train_num): m_lr_scheduler.step() w_lr_scheduler.step() m_optimizer.zero_grad() w_optimizer.zero_grad() adv_rets = recurrent_func('adv')(model_dict, use_cuda) real_goal = adv_rets["real_goal"] all_goal = adv_rets["all_goal"] prediction = adv_rets["prediction"] delta_feature = adv_rets["delta_feature"] delta_feature_for_worker = adv_rets["delta_feature_for_worker"] gen_token = adv_rets["gen_token"] rewards = get_rewards(model_dict, gen_token, rollout_num, use_cuda) m_loss = loss_func("adv_manager")(rewards, real_goal, delta_feature) w_loss = loss_func("adv_worker")(all_goal, delta_feature_for_worker, gen_token, prediction, vocab_size, use_cuda) torch.autograd.grad(m_loss, manager.parameters()) torch.autograd.grad(w_loss, worker.parameters()) clip_grad_norm(manager.parameters(), max_norm=max_norm) clip_grad_norm(worker.parameters(), max_norm=max_norm) m_optimizer.step() w_optimizer.step() del adv_rets del real_goal del all_goal del prediction del delta_feature del delta_feature_for_worker del gen_token del rewards ''' Adversarial train for discriminator. ''' for _ in range(dis_train_epoch): generate_samples(model_dict, negative_file, num_batches, use_cuda, temperature) dis_dataloader_params["positive_filepath"] = positive_file dis_dataloader_params["negative_filepath"] = negative_file dataloader = dis_data_loader(**dis_dataloader_params) cross_entropy = nn.CrossEntropyLoss() if use_cuda: cross_entropy = cross_entropy.cuda() for _ in range(dis_train_num): for i, sample in enumerate(dataloader): data, label = sample["data"], sample["label"] data = Variable(data) label = Variable(label) if use_cuda: data = data.cuda(async=True) label = label.cuda(async=True) outs = discriminator(data) loss = cross_entropy(outs["score"], label.view(-1)) + \ discriminator.l2_loss() d_optimizer.zero_grad() d_lr_scheduler.step() loss.backward() d_optimizer.step() model_dict["discriminator"] = discriminator generator.worker = worker generator.manager = manager model_dict["generator"] = generator optimizer_dict["manager"] = m_optimizer optimizer_dict["worker"] = w_optimizer optimizer_dict["discriminator"] = d_optimizer scheduler_dict["manager"] = m_lr_scheduler scheduler_dict["worker"] = w_lr_scheduler scheduler_dict["discriminator"] = d_lr_scheduler return model_dict, optimizer_dict, scheduler_dict
def main(args): os.environ['KMP_WARNINGS'] = '0' torch.cuda.manual_seed_all(1) np.random.seed(0) # filter array num_features = [ args.features * i for i in range(1, args.levels + 2 + args.levels_without_sample) ] # 確定 輸出大小 target_outputs = int(args.output_size * args.sr) # 訓練才保存模型設定參數 # 設定teacher and student and student_for_backward 超參數 student_KD = Waveunet(args.channels, num_features, args.channels, levels=args.levels, encoder_kernel_size=args.encoder_kernel_size, decoder_kernel_size=args.decoder_kernel_size, target_output_size=target_outputs, depth=args.depth, strides=args.strides, conv_type=args.conv_type, res=args.res) KD_optimizer = Adam(params=student_KD.parameters(), lr=args.lr) print(25 * '=' + 'model setting' + 25 * '=') print('student_KD: ', student_KD.shapes) if args.cuda: student_KD = utils.DataParallel(student_KD) print("move student_KD to gpu\n") student_KD.cuda() state = {"step": 0, "worse_epochs": 0, "epochs": 0, "best_pesq": -np.Inf} if args.load_model is not None: print("Continuing full model from checkpoint " + str(args.load_model)) state = utils.load_model(student_KD, KD_optimizer, args.load_model, args.cuda) dataset = get_folds(args.dataset_dir, args.outside_test) log_dir, checkpoint_dir, result_dir = utils.mkdir_and_get_path(args) # print(model) if args.test is False: writer = SummaryWriter(log_dir) # set hypeparameter # printing hypeparameters info with open(os.path.join(log_dir, 'config.json'), 'w') as f: json.dump(args.__dict__, f, indent=5) print('saving commandline_args') if args.teacher_model is not None: print(25 * '=' + 'printing hypeparameters info' + 25 * '=') print(f'KD_method = {args.KD_method}') teacher_num_features = [ 24 * i for i in range(1, args.levels + 2 + args.levels_without_sample) ] teacher_model = Waveunet( args.channels, teacher_num_features, args.channels, levels=args.levels, encoder_kernel_size=args.encoder_kernel_size, decoder_kernel_size=args.decoder_kernel_size, target_output_size=target_outputs, depth=args.depth, strides=args.strides, conv_type=args.conv_type, res=args.res) student_copy = Waveunet( args.channels, num_features, args.channels, levels=args.levels, encoder_kernel_size=args.encoder_kernel_size, decoder_kernel_size=args.decoder_kernel_size, target_output_size=target_outputs, depth=args.depth, strides=args.strides, conv_type=args.conv_type, res=args.res) copy_optimizer = Adam(params=student_copy.parameters(), lr=args.lr) student_copy2 = Waveunet( args.channels, num_features, args.channels, levels=args.levels, encoder_kernel_size=args.encoder_kernel_size, decoder_kernel_size=args.decoder_kernel_size, target_output_size=target_outputs, depth=args.depth, strides=args.strides, conv_type=args.conv_type, res=args.res) copy2_optimizer = Adam(params=student_copy2.parameters(), lr=args.lr) policy_network = RL(n_inputs=2, kernel_size=6, stride=1, conv_type=args.conv_type, pool_size=4) PG_optimizer = Adam(params=policy_network.parameters(), lr=args.RL_lr) if args.cuda: teacher_model = utils.DataParallel(teacher_model) policy_network = utils.DataParallel(policy_network) student_copy = utils.DataParallel(student_copy) student_copy2 = utils.DataParallel(student_copy2) # print("move teacher to gpu\n") teacher_model.cuda() # print("student_copy to gpu\n") student_copy.cuda() # print("student_copy2 to gpu\n") student_copy2.cuda() # print("move policy_network to gpu\n") policy_network.cuda() student_size = sum(p.numel() for p in student_KD.parameters()) teacher_size = sum(p.numel() for p in teacher_model.parameters()) print('student_parameter count: ', str(student_size)) print('teacher_model_parameter count: ', str(teacher_size)) print('RL_parameter count: ', str(sum(p.numel() for p in policy_network.parameters()))) print(f'compression raito :{100*(student_size/teacher_size)}%') if args.teacher_model is not None: print("load teacher model" + str(args.teacher_model)) _ = utils.load_model(teacher_model, None, args.teacher_model, args.cuda) teacher_model.eval() if args.load_RL_model is not None: print("Continuing full RL_model from checkpoint " + str(args.load_RL_model)) _ = utils.load_model(policy_network, PG_optimizer, args.load_RL_model, args.cuda) # If not data augmentation, at least crop targets to fit model output shape crop_func = partial(crop, shapes=student_KD.shapes) ### DATASET train_data = SeparationDataset(dataset, "train", args.sr, args.channels, student_KD.shapes, False, args.hdf_dir, audio_transform=crop_func) val_data = SeparationDataset(dataset, "test", args.sr, args.channels, student_KD.shapes, False, args.hdf_dir, audio_transform=crop_func) dataloader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, worker_init_fn=utils.worker_init_fn, pin_memory=True) # Set up the loss function if args.loss == "L1": criterion = nn.L1Loss() elif args.loss == "L2": criterion = nn.MSELoss() else: raise NotImplementedError("Couldn't find this loss!") My_criterion = customLoss() ### TRAINING START print('TRAINING START') if state["epochs"] > 0: state["epochs"] = state["epochs"] + 1 batch_num = (len(train_data) // args.batch_size) if args.teacher_model is not None: counting = 0 PG_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( optimizer=PG_optimizer, gamma=args.decayRate) while counting < state["epochs"]: PG_optimizer.zero_grad() PG_optimizer.step() counting += 1 PG_lr_scheduler.step() # print(f'modify lr RL rate : {counting} , until : {state["epochs"]}') while state["epochs"] < 100: memory_alpha = [] print("epoch:" + str(state["epochs"])) # monitor_value total_avg_reward = 0 total_avg_scalar_reward = 0 avg_origin_loss = 0 all_avg_KD_rate = 0 same = 0 with tqdm(total=len(dataloader)) as pbar: for example_num, (x, targets) in enumerate(dataloader): # if example_num==20: # break student_KD.train() if args.cuda: x = x.cuda() targets = targets.cuda() if args.teacher_model is not None: student_copy.train() student_copy2.train() # Set LR for this iteration temp = {'state_dict': None, 'optim_dict': None} temp['state_dict'] = copy.deepcopy( student_KD.state_dict()) temp['optim_dict'] = copy.deepcopy( KD_optimizer.state_dict()) #print('base_model from KD') student_KD.load_state_dict(temp['state_dict']) KD_optimizer.load_state_dict(temp['optim_dict']) student_copy.load_state_dict(temp['state_dict']) copy_optimizer.load_state_dict(temp['optim_dict']) student_copy2.load_state_dict(temp['state_dict']) copy2_optimizer.load_state_dict(temp['optim_dict']) utils.set_cyclic_lr(KD_optimizer, example_num, len(train_data) // args.batch_size, args.cycles, args.min_lr, args.lr) utils.set_cyclic_lr(copy_optimizer, example_num, len(train_data) // args.batch_size, args.cycles, args.min_lr, args.lr) utils.set_cyclic_lr(copy2_optimizer, example_num, len(train_data) // args.batch_size, args.cycles, args.min_lr, args.lr) # forward student and teacher get output student_KD_output, avg_student_KD_loss = utils.compute_loss( student_KD, x, targets, criterion, compute_grad=False) teacher_output, _ = utils.compute_loss( teacher_model, x, targets, criterion, compute_grad=False) # PG_state diff_from_target = targets.detach( ) - student_KD_output.detach() diff_from_teacher = teacher_output.detach( ) - student_KD_output.detach() PG_state = torch.cat( (diff_from_target, diff_from_teacher), 1) # forward RL get alpha alpha = policy_network(PG_state) nograd_alpha = alpha.detach() avg_KD_rate = torch.mean(nograd_alpha).item() all_avg_KD_rate += avg_KD_rate / batch_num KD_optimizer.zero_grad() KD_outputs, KD_hard_loss, KD_loss, KD_soft_loss = utils.KD_compute_loss( student_KD, teacher_model, x, targets, My_criterion, alpha=nograd_alpha, compute_grad=True, KD_method=args.KD_method) KD_optimizer.step() copy_optimizer.zero_grad() _, _, _, _ = utils.KD_compute_loss( student_copy, teacher_model, x, targets, My_criterion, alpha=1, compute_grad=True, KD_method=args.KD_method) copy_optimizer.step() copy2_optimizer.zero_grad() _, _, _, _ = utils.KD_compute_loss( student_copy2, teacher_model, x, targets, My_criterion, alpha=0, compute_grad=True, KD_method=args.KD_method) copy2_optimizer.step() # calculate backwarded model MSE backward_KD_loss = utils.loss_for_sample( student_KD, x, targets) backward_copy_loss = utils.loss_for_sample( student_copy, x, targets) backward_copy2_loss = utils.loss_for_sample( student_copy2, x, targets) # calculate rewards rewards, same_num, before_decay = utils.get_rewards( backward_KD_loss.detach(), backward_copy_loss.detach(), backward_copy2_loss.detach(), backward_KD_loss.detach(), len(train_data), state["epochs"] + 1) same += same_num rewards = rewards.detach() avg_origin_loss += avg_student_KD_loss / batch_num # avg_reward avg_reward = torch.mean(rewards) avg_scalar_reward = torch.mean(torch.abs(rewards)) total_avg_reward += avg_reward.item() / batch_num total_avg_scalar_reward += avg_scalar_reward.item( ) / batch_num # append to memory_alpha nograd_alpha = nograd_alpha.detach().cpu() memory_alpha.append(nograd_alpha.numpy()) PG_optimizer.zero_grad() _ = utils.RL_compute_loss(alpha, rewards, nn.MSELoss()) PG_optimizer.step() # print info # print(f'avg_KD_rate = {avg_KD_rate} ') # print(f'student_KD_loss = {avg_student_KD_loss}') # print(f'backward_student_copy_loss = {np.mean(backward_copy_loss.detach().cpu().numpy())}') # print(f'backward_student_KD_loss = {np.mean(backward_KD_loss.detach().cpu().numpy())}') # print(f'backward_student_copy2_loss = {np.mean(backward_copy2_loss.detach().cpu().numpy())}') # print(f'avg_reward = {avg_reward}') # print(f'total_avg_reward = {total_avg_reward}') # print(f'same = {same}') # add to tensorboard writer.add_scalar("student_KD_loss", avg_student_KD_loss, state["step"]) writer.add_scalar( "backward_student_KD_loss", np.mean(backward_KD_loss.detach().cpu().numpy()), state["step"]) writer.add_scalar("KD_loss", KD_loss, state["step"]) writer.add_scalar("KD_hard_loss", KD_hard_loss, state["step"]) writer.add_scalar("KD_soft_loss", KD_soft_loss, state["step"]) writer.add_scalar("avg_KD_rate", avg_KD_rate, state["step"]) writer.add_scalar("rewards", avg_reward, state["step"]) writer.add_scalar("scalar_rewards", avg_scalar_reward, state["step"]) writer.add_scalar("before_decay", before_decay, state["step"]) else: # no KD training utils.set_cyclic_lr(KD_optimizer, example_num, len(train_data) // args.batch_size, args.cycles, args.min_lr, args.lr) KD_optimizer.zero_grad() KD_outputs, KD_hard_loss = utils.compute_loss( student_KD, x, targets, nn.MSELoss(), compute_grad=True) KD_optimizer.step() avg_origin_loss += KD_hard_loss / batch_num writer.add_scalar("student_KD_loss", KD_hard_loss, state["step"]) ### save wav #### if example_num % args.example_freq == 0: input_centre = torch.mean( x[0, :, student_KD.shapes["output_start_frame"]: student_KD.shapes["output_end_frame"]], 0) # Stereo not supported for logs yet # target=torch.mean(targets[0], 0).cpu().numpy() # pred=torch.mean(KD_outputs[0], 0).detach().cpu().numpy() # inputs=input_centre.cpu().numpy() writer.add_audio("input:", input_centre, state["step"], sample_rate=args.sr) writer.add_audio("pred:", torch.mean(KD_outputs[0], 0), state["step"], sample_rate=args.sr) writer.add_audio("target", torch.mean(targets[0], 0), state["step"], sample_rate=args.sr) state["step"] += 1 pbar.update(1) # VALIDATE val_loss, val_metrics = validate(args, student_KD, criterion, val_data) print("ori VALIDATION FINISHED: LOSS: " + str(val_loss)) choose_val = val_metrics if args.teacher_model is not None: for i in range(len(nograd_alpha)): writer.add_scalar("KD_rate_" + str(i), nograd_alpha[i], state["epochs"]) print(f'all_avg_KD_rate = {all_avg_KD_rate}') writer.add_scalar("all_avg_KD_rate", all_avg_KD_rate, state["epochs"]) # writer.add_scalar("val_loss_copy", val_loss_copy, state["epochs"]) writer.add_scalar("total_avg_reward", total_avg_reward, state["epochs"]) writer.add_scalar("total_avg_scalar_reward", total_avg_scalar_reward, state["epochs"]) RL_checkpoint_path = os.path.join( checkpoint_dir, "RL_checkpoint_" + str(state["epochs"])) utils.save_model(policy_network, PG_optimizer, state, RL_checkpoint_path) PG_lr_scheduler.step() writer.add_scalar("same", same, state["epochs"]) writer.add_scalar("avg_origin_loss", avg_origin_loss, state["epochs"]) writer.add_scalar("val_enhance_pesq", choose_val[0], state["epochs"]) writer.add_scalar("val_improve_pesq", choose_val[1], state["epochs"]) writer.add_scalar("val_enhance_stoi", choose_val[2], state["epochs"]) writer.add_scalar("val_improve_stoi", choose_val[3], state["epochs"]) writer.add_scalar("val_enhance_SISDR", choose_val[4], state["epochs"]) writer.add_scalar("val_improve_SISDR", choose_val[5], state["epochs"]) # writer.add_scalar("val_COPY_pesq",val_metrics_copy[0], state["epochs"]) writer.add_scalar("val_loss", val_loss, state["epochs"]) # Set up training state dict that will also be saved into checkpoints checkpoint_path = os.path.join( checkpoint_dir, "checkpoint_" + str(state["epochs"])) if choose_val[0] < state["best_pesq"]: state["worse_epochs"] += 1 else: print("MODEL IMPROVED ON VALIDATION SET!") state["worse_epochs"] = 0 state["best_pesq"] = choose_val[0] state["best_checkpoint"] = checkpoint_path # CHECKPOINT print("Saving model...") utils.save_model(student_KD, KD_optimizer, state, checkpoint_path) print('dump alpha_memory') with open(os.path.join(log_dir, 'alpha_' + str(state["epochs"])), "wb") as fp: #Pickling pickle.dump(memory_alpha, fp) state["epochs"] += 1 writer.close() info = args.model_name path = os.path.join(result_dir, info) else: PATH = args.load_model.split("/") info = PATH[-3] + "_" + PATH[-1] if (args.outside_test == True): info += "_outside_test" print(info) path = os.path.join(result_dir, info) # test_data = SeparationDataset(dataset, "test", args.sr, args.channels, student_KD.shapes, False, args.hdf_dir, audio_transform=crop_func) #### TESTING #### # Test loss print("TESTING") # eval metrics #ling_data=get_ling_data_list('/media/hd03/sutsaiwei_data/data/mydata/ling_data') #validate(args, student_KD, criterion, test_data) #test_metrics = ling_evaluate(args, ling_data['noisy'], student_KD) #test_metrics = evaluate_without_noisy(args, dataset["test"], student_KD) test_metrics = evaluate(args, dataset["test"], student_KD) test_pesq = test_metrics['pesq'] test_stoi = test_metrics['stoi'] test_SISDR = test_metrics['SISDR'] test_noise = test_metrics['noise'] if not os.path.exists(path): os.makedirs(path) utils.save_result(test_pesq, path, "pesq") utils.save_result(test_stoi, path, "stoi") utils.save_result(test_SISDR, path, "SISDR") utils.save_result(test_noise, path, "noise")
def adversarial_train(model_dict, optimizer_dict, scheduler_dict, dis_dataloader_params, vocab_size, pos_file, neg_file, batch_size, gen_train_num=1, dis_train_epoch=5, dis_train_num=3, max_norm=5.0, rollout_num=4, use_cuda=False, temperature=1.0, epoch=1, tot_epoch=100): """ Get all the models, optimizer and schedulers """ generator = model_dict["generator"] discriminator = model_dict["discriminator"] worker = generator.worker manager = generator.manager m_optimizer = optimizer_dict["manager"] w_optimizer = optimizer_dict["worker"] d_optimizer = optimizer_dict["discriminator"] #Why zero grad only m and w? m_optimizer.zero_grad() w_optimizer.zero_grad() m_lr_scheduler = scheduler_dict["manager"] w_lr_scheduler = scheduler_dict["worker"] d_lr_scheduler = scheduler_dict["discriminator"] #Adversarial training for generator for _ in range(gen_train_num): m_lr_scheduler.step() w_lr_scheduler.step() m_optimizer.zero_grad() w_optimizer.zero_grad() #get all the return values adv_rets = recurrent_func("adv")(model_dict, use_cuda) real_goal = adv_rets["real_goal"] all_goal = adv_rets["all_goal"] prediction = adv_rets["prediction"] delta_feature = adv_rets["delta_feature"] delta_feature_for_worker = adv_rets["delta_feature_for_worker"] gen_token = adv_rets["gen_token"] rewards = get_rewards(model_dict, gen_token, rollout_num, use_cuda) m_loss = loss_func("adv_manager")(rewards, real_goal, delta_feature) w_loss = loss_func("adv_worker")(all_goal, delta_feature_for_worker, gen_token, prediction, vocab_size, use_cuda) torch.autograd.grad( m_loss, manager.parameters()) #based on loss improve the parameters torch.autograd.grad(w_loss, worker.parameters()) clip_grad_norm_(manager.parameters(), max_norm) clip_grad_norm_(worker.parameters(), max_norm) m_optimizer.step() w_optimizer.step() print("Adv-Manager loss: {:.5f} Adv-Worker loss: {:.5f}".format( m_loss, w_loss)) del adv_rets del real_goal del all_goal del prediction del delta_feature del delta_feature_for_worker del gen_token del rewards #Adversarial training for discriminator for n in range(dis_train_epoch): generate_samples(model_dict, neg_file, batch_size, use_cuda, temperature) dis_dataloader_params["positive_filepath"] = pos_file dis_dataloader_params["negative_filepath"] = neg_file dataloader = dis_data_loader(**dis_dataloader_params) cross_entropy = nn.CrossEntropyLoss() if use_cuda: cross_entropy = cross_entropy.cuda() """ for d-steps do Use current G, θm,θw to generate negative examples and combine with given positive examples S Train discriminator Dφ for k epochs by Eq. (2) end for """ for _ in range(dis_train_num): for i, sample in enumerate(dataloader): data, label = sample["data"], sample["label"] data = Variable(data) label = Variable(label) if use_cuda: data = data.cuda(async=True) label = label.cuda(async=True) outs = discriminator(data) loss = cross_entropy(outs["score"], label.view(-1)) + discriminator.l2_loss() d_optimizer.zero_grad() d_lr_scheduler.step() loss.backward() d_optimizer.step() print("{}/{} Adv-Discriminator Loss: {:.5f}".format( n, range(dis_train_epoch), loss)) #Save all changes model_dict["discriminator"] = discriminator generator.worker = worker generator.manager = manager model_dict["generator"] = generator optimizer_dict["manager"] = m_optimizer optimizer_dict["worker"] = w_optimizer optimizer_dict["discriminator"] = d_optimizer scheduler_dict["manager"] = m_lr_scheduler scheduler_dict["worker"] = w_lr_scheduler scheduler_dict["disciminator"] = d_lr_scheduler return model_dict, optimizer_dict, scheduler_dict
def test_loss_func(use_cuda=False): ''' Prepare model_dict. ''' model_dict = prepare_model_dict(use_cuda) generator = model_dict["generator"] worker = generator.worker manager = generator.manager ''' Prepare some fake data. ''' dataloader = prepare_fake_data() ''' Start testing all recurrent functions. ''' m_optimizer = optim.Adam(manager.parameters(), lr=0.001) w_optimizer = optim.Adam(worker.parameters(), lr=0.001) m_optimizer.zero_grad() w_optimizer.zero_grad() for i, sample in enumerate(dataloader): sample = Variable(sample) if use_cuda: sample = sample.cuda(async=True) # Test pre. pre_rets = recurrent_func("pre")(model_dict, sample, use_cuda) real_goal = pre_rets["real_goal"] prediction = pre_rets["prediction"] delta_feature = pre_rets["delta_feature"] m_loss = loss_func("pre_manager")(real_goal, delta_feature) torch.autograd.grad(m_loss, manager.parameters()) nn.utils.clip_grad_norm(manager.parameters(), max_norm=5.0) m_optimizer.step() m_optimizer.zero_grad() w_loss = loss_func("pre_worker")(sample, prediction, 5000, use_cuda) torch.autograd.grad(w_loss, worker.parameters()) nn.utils.clip_grad_norm(worker.parameters(), max_norm=5.0) w_optimizer.step() w_optimizer.zero_grad() print("pre_m_loss={}, pre_w_loss={}".format(m_loss.data[0], w_loss.data[0])) print("Pretrain loss function test finished!") print("\n") # Test adv. adv_rets = recurrent_func('adv')(model_dict, use_cuda) real_goal = adv_rets["real_goal"] all_goal = adv_rets["all_goal"] prediction = adv_rets["prediction"] delta_feature = adv_rets["delta_feature"] delta_feature_for_worker = adv_rets["delta_feature_for_worker"] gen_token = adv_rets["gen_token"] rewards = get_rewards(model_dict, gen_token, 4, use_cuda) m_loss = loss_func("adv_manager")(rewards, real_goal, delta_feature) w_loss = loss_func("adv_worker")(all_goal, delta_feature_for_worker, gen_token, prediction, 5000, use_cuda) m_optimizer = optim.Adam(manager.parameters(), lr=0.001) w_optimizer = optim.Adam(worker.parameters(), lr=0.001) m_optimizer.zero_grad() w_optimizer.zero_grad() torch.autograd.grad(m_loss, manager.parameters()) torch.autograd.grad(w_loss, worker.parameters()) nn.utils.clip_grad_norm(manager.parameters(), max_norm=5.0) nn.utils.clip_grad_norm(worker.parameters(), max_norm=5.0) m_optimizer.step() w_optimizer.step() print("adv_m_loss={}, adv_w_loss={}".format(m_loss.data[0], w_loss.data[0])) print("Adversarial training loss function test finished!") print("\n") if i > 0: break