예제 #1
0
def main():

    import argparse
    parser = argparse.ArgumentParser(
        description="imsitu VSRL. Training, evaluation and prediction.")
    parser.add_argument("--gpuid",
                        default=-1,
                        help="put GPU id > -1 in GPU mode",
                        type=int)
    #parser.add_argument("--command", choices = ["train", "eval", "resume", 'predict'], required = True)
    parser.add_argument('--resume_training',
                        action='store_true',
                        help='Resume training from the model [resume_model]')
    parser.add_argument('--resume_model',
                        type=str,
                        default='',
                        help='The model we resume')
    parser.add_argument('--verb_module',
                        type=str,
                        default='',
                        help='pretrained verb module')
    parser.add_argument('--noun_module',
                        type=str,
                        default='',
                        help='pretrained noun module')
    parser.add_argument('--train_role',
                        action='store_true',
                        help='cnn fix, verb fix, role train from the scratch')
    parser.add_argument(
        '--finetune_verb',
        action='store_true',
        help='cnn fix, verb finetune, role train from the scratch')
    parser.add_argument(
        '--finetune_cnn',
        action='store_true',
        help='cnn finetune, verb finetune, role train from the scratch')
    parser.add_argument('--finetune_both',
                        action='store_true',
                        help='cnn fix, verb finetune, role finetune')
    parser.add_argument('--output_dir',
                        type=str,
                        default='./trained_models',
                        help='Location to output the model')
    parser.add_argument('--evaluate',
                        action='store_true',
                        help='Only use the testing mode')
    parser.add_argument('--test',
                        action='store_true',
                        help='Only use the testing mode')
    #todo: train role module separately with gt verbs

    args = parser.parse_args()

    batch_size = 640
    #lr = 5e-6
    lr = 0.0001
    lr_max = 5e-4
    lr_gamma = 0.1
    lr_step = 25
    clip_norm = 50
    weight_decay = 1e-4
    n_epoch = 500
    n_worker = 3

    dataset_folder = 'imSitu'
    imgset_folder = 'resized_256'

    print('model spec :, mac net finetune pretrained verb and role labeller ')

    train_set = json.load(open(dataset_folder + "/train.json"))
    encoder = imsitu_encoder(train_set)

    model = model_mac_finetune_both.E2ENetwork(encoder, args.gpuid)

    # To group up the features
    cnn_verb_features, cnn_noun_features, verb_features, role_features = utils.group_features(
        model)

    train_set = imsitu_loader(imgset_folder, train_set, encoder,
                              model.train_preprocess())

    train_loader = torch.utils.data.DataLoader(train_set,
                                               batch_size=64,
                                               shuffle=True,
                                               num_workers=n_worker)

    dev_set = json.load(open(dataset_folder + "/dev.json"))
    dev_set = imsitu_loader(imgset_folder, dev_set, encoder,
                            model.dev_preprocess())
    dev_loader = torch.utils.data.DataLoader(dev_set,
                                             batch_size=64,
                                             shuffle=True,
                                             num_workers=n_worker)

    test_set = json.load(open(dataset_folder + "/test.json"))
    test_set = imsitu_loader(imgset_folder, test_set, encoder,
                             model.dev_preprocess())
    test_loader = torch.utils.data.DataLoader(test_set,
                                              batch_size=64,
                                              shuffle=True,
                                              num_workers=n_worker)

    traindev_set = json.load(open(dataset_folder + "/dev.json"))
    traindev_set = imsitu_loader(imgset_folder, traindev_set, encoder,
                                 model.dev_preprocess())
    traindev_loader = torch.utils.data.DataLoader(traindev_set,
                                                  batch_size=8,
                                                  shuffle=True,
                                                  num_workers=n_worker)

    utils.set_trainable(model, False)
    if args.train_role:
        print('CNN fix, Verb fix, train role from the scratch from: {}'.format(
            args.verb_module))
        args.train_all = False
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb],
                       ['conv', 'verb'])
        optimizer_select = 1
        model_name = 'cfx_vfx_rtrain'

    elif args.finetune_verb:
        print('CNN fix, Verb finetune, train role from the scratch from: {}'.
              format(args.verb_module))
        args.train_all = True
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb],
                       ['conv', 'verb'])
        optimizer_select = 2
        model_name = 'cfx_vft_rtrain'

    elif args.finetune_cnn:
        print(
            'CNN finetune, Verb finetune, train role from the scratch from: {}'
            .format(args.verb_module))
        args.train_all = True
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb],
                       ['conv', 'verb'])
        optimizer_select = 3
        model_name = 'cft_vft_rtrain'

    elif args.resume_training:
        print('Resume training from: {}'.format(args.resume_model))
        args.train_all = True
        if len(args.resume_model) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.resume_model, [model])
        optimizer_select = 0
        model_name = 'resume_all'

    elif args.finetune_both:
        print('finetune model from pretrained verb and noun models')
        args.train_all = True
        if len(args.verb_module) == 0 or len(args.noun_module) == 0:
            raise Exception('[pretrained verb or noun module] not specified')
        utils.load_net(args.verb_module, [model.conv_verb, model.verb],
                       ['conv', 'verb'])
        utils.load_net(args.noun_module, [
            model.conv_noun, model.role_lookup, model.verb_lookup,
            model.role_labeller
        ], ['conv', 'role_lookup', 'verb_lookup', 'role_labeller'])
        optimizer_select = 4
        model_name = 'finetune_both'

    else:
        print('Training from the scratch.')
        optimizer_select = 0
        args.train_all = True
        model_name = 'train_full'

    optimizer = utils.get_optimizer(lr, weight_decay, optimizer_select,
                                    cnn_verb_features, cnn_noun_features,
                                    verb_features, role_features)

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)

    if args.gpuid >= 0:
        #print('GPU enabled')
        model.cuda()
    '''optimizer = torch.optim.Adam([{'params': model.verb.parameters(), 'lr': 5e-5},
                                  {'params': model.role_lookup.parameters(), 'lr': 5e-5},
                                  {'params': model.verb_lookup.parameters(), 'lr': 5e-5},
                                  {'params': model.role_labeller.parameters(), 'lr': 5e-5}])'''

    #optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
    #scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=lr_step, gamma=lr_gamma)
    #gradient clipping, grad check
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)

    if args.evaluate:
        top1, top5, val_loss = eval(model,
                                    dev_loader,
                                    encoder,
                                    args.gpuid,
                                    write_to_file=True)

        top1_avg = top1.get_average_results()
        top5_avg = top5.get_average_results()

        avg_score = top1_avg["verb"] + top1_avg["value"] + top1_avg["value-all"] + top5_avg["verb"] + \
                    top5_avg["value"] + top5_avg["value-all"] + top5_avg["value*"] + top5_avg["value-all*"]
        avg_score /= 8

        print('Dev average :{:.2f} {} {}'.format(
            avg_score * 100, utils.format_dict(top1_avg, '{:.2f}', '1-'),
            utils.format_dict(top5_avg, '{:.2f}', '5-')))

        #write results to csv file
        role_dict = top1.role_dict
        fail_val_all = top1.value_all_dict
        pass_val_dict = top1.vall_all_correct

        with open('role_pred_data.json', 'w') as fp:
            json.dump(role_dict, fp, indent=4)

        with open('fail_val_all.json', 'w') as fp:
            json.dump(fail_val_all, fp, indent=4)

        with open('pass_val_all.json', 'w') as fp:
            json.dump(pass_val_dict, fp, indent=4)

        print('Writing predictions to file completed !')

    elif args.test:
        top1, top5, val_loss = eval(model,
                                    test_loader,
                                    encoder,
                                    args.gpuid,
                                    write_to_file=True)

        top1_avg = top1.get_average_results()
        top5_avg = top5.get_average_results()

        avg_score = top1_avg["verb"] + top1_avg["value"] + top1_avg["value-all"] + top5_avg["verb"] + \
                    top5_avg["value"] + top5_avg["value-all"] + top5_avg["value*"] + top5_avg["value-all*"]
        avg_score /= 8

        print('Test average :{:.2f} {} {}'.format(
            avg_score * 100, utils.format_dict(top1_avg, '{:.2f}', '1-'),
            utils.format_dict(top5_avg, '{:.2f}', '5-')))

    else:

        print('Model training started!')
        train(model, train_loader, dev_loader, traindev_loader, optimizer,
              scheduler, n_epoch, args.output_dir, encoder, args.gpuid,
              clip_norm, lr_max, model_name, args)
def main():

    import argparse
    parser = argparse.ArgumentParser(description="imsitu VSRL. Training, evaluation and prediction.")
    parser.add_argument("--gpuid", default=-1, help="put GPU id > -1 in GPU mode", type=int)
    #parser.add_argument("--command", choices = ["train", "eval", "resume", 'predict'], required = True)
    parser.add_argument('--resume_training', action='store_true', help='Resume training from the model [resume_model]')
    parser.add_argument('--resume_model', type=str, default='', help='The model we resume')
    parser.add_argument('--verb_module', type=str, default='', help='pretrained verb module')
    parser.add_argument('--train_role', action='store_true', help='cnn fix, verb fix, role train from the scratch')
    parser.add_argument('--finetune_verb', action='store_true', help='cnn fix, verb finetune, role train from the scratch')
    parser.add_argument('--finetune_cnn', action='store_true', help='cnn finetune, verb finetune, role train from the scratch')
    parser.add_argument('--output_dir', type=str, default='./trained_models', help='Location to output the model')
    #todo: train role module separately with gt verbs

    args = parser.parse_args()

    batch_size = 640
    #lr = 5e-6
    lr = 0.0001
    lr_max = 5e-4
    lr_gamma = 0.1
    lr_step = 25
    clip_norm = 50
    weight_decay = 1e-4
    n_epoch = 500
    n_worker = 4

    dataset_folder = 'imSitu'
    imgset_folder = 'resized_256'

    print('model spec :, gmac net v pred for training and loss calc normalizing from only matching role count ')

    train_set = json.load(open(dataset_folder + "/train.json"))
    encoder = imsitu_encoder(train_set)

    model = gmac_model_with_verb.E2ENetwork(encoder, args.gpuid)

    # To group up the features
    cnn_features, verb_features, role_features = utils.group_features(model)

    train_set = imsitu_loader(imgset_folder, train_set, encoder, model.train_preprocess())

    train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True, num_workers=n_worker)

    dev_set = json.load(open(dataset_folder +"/dev.json"))
    dev_set = imsitu_loader(imgset_folder, dev_set, encoder, model.dev_preprocess())
    dev_loader = torch.utils.data.DataLoader(dev_set, batch_size=64, shuffle=True, num_workers=n_worker)

    traindev_set = json.load(open(dataset_folder +"/dev.json"))
    traindev_set = imsitu_loader(imgset_folder, traindev_set, encoder, model.dev_preprocess())
    traindev_loader = torch.utils.data.DataLoader(traindev_set, batch_size=8, shuffle=True, num_workers=n_worker)

    utils.set_trainable(model, False)
    if args.train_role:
        print('CNN fix, Verb fix, train role from the scratch from: {}'.format(args.verb_module))
        args.train_all = False
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb], ['conv', 'verb'])
        optimizer_select = 1
        model_name = 'cfx_vfx_rtrain'

    elif args.finetune_verb:
        print('CNN fix, Verb finetune, train role from the scratch from: {}'.format(args.verb_module))
        args.train_all = True
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb], ['conv', 'verb'])
        optimizer_select = 2
        model_name = 'cfx_vft_rtrain'

    elif args.finetune_cnn:
        print('CNN finetune, Verb finetune, train role from the scratch from: {}'.format(args.verb_module))
        args.train_all = True
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb], ['conv', 'verb'])
        optimizer_select = 3
        model_name = 'cft_vft_rtrain'

    elif args.resume_training:
        print('Resume training from: {}'.format(args.resume_model))
        args.train_all = True
        if len(args.resume_model) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.resume_model, [model])
        optimizer_select = 0
        model_name = 'resume_all'
    else:
        print('Training from the scratch.')
        optimizer_select = 0
        args.train_all = True
        model_name = 'train_full'

    optimizer = utils.get_optimizer(lr,weight_decay,optimizer_select,
                                    cnn_features, verb_features, role_features)

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)

    if args.gpuid >= 0:
        #print('GPU enabled')
        model.cuda()

    optimizer = torch.optim.Adam([{'params': model.conv.parameters(), 'lr': 5e-5},
                                  {'params': model.verb.parameters()},
                                  {'params': model.role_labeller.parameters()}],
                                 lr=1e-3)

    #optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
    #scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=lr_step, gamma=lr_gamma)
    #gradient clipping, grad check
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)

    print('Model training started!')
    train(model, train_loader, dev_loader, traindev_loader, optimizer, scheduler, n_epoch, args.output_dir, encoder, args.gpuid, clip_norm, lr_max, model_name, args)
예제 #3
0
            model.load_state_dict(torch.load(args.weights_file))
    
    dataset_train = imSituSituation(args.image_dir, train_set, encoder, model.train_preprocess())
    dataset_dev = imSituSituation(args.image_dir, dev_set, encoder, model.dev_preprocess())

    ngpus = 1
    device_array = [i for i in range(0,ngpus)]
    #batch_size = args.batch_size*ngpus
    batch_size = 1

    train_loader  = torch.utils.data.DataLoader(dataset_train, batch_size = batch_size, shuffle = True, num_workers = 1)
    dev_loader  = torch.utils.data.DataLoader(dataset_dev, batch_size = batch_size, shuffle = True, num_workers = 1)

    model.cuda()
    # need to make f rcnn params fixed
    frcnn_features, crf_features = group_features(model)
    optimizer = network.get_optimizer_dvsrl(args.learning_rate, 0, 1, args,
                                      frcnn_features, crf_features, args.weight_decay)
    #optimizer = optim.Adam(model.parameters(), lr = args.learning_rate , weight_decay = args.weight_decay)
    train_model(args.training_epochs, args.eval_frequency, train_loader, dev_loader, model, encoder, optimizer, args.output_dir)
  
  elif args.command == "eval":
    print "command = evaluating"
    eval_file = json.load(open(args.dataset_dir + "/" + args.eval_file))  
      
    if args.encoding_file is None: 
      print "expecting encoder file to run evaluation"
      exit()
    else:
      encoder = torch.load(args.encoding_file)
    print "creating model..." 
예제 #4
0
def main():

    import argparse
    parser = argparse.ArgumentParser(
        description="imsitu VSRL. Training, evaluation and prediction.")
    parser.add_argument("--gpuid",
                        default=-1,
                        help="put GPU id > -1 in GPU mode",
                        type=int)
    #parser.add_argument("--command", choices = ["train", "eval", "resume", 'predict'], required = True)
    parser.add_argument('--resume_training',
                        action='store_true',
                        help='Resume training from the model [resume_model]')
    parser.add_argument('--resume_model',
                        type=str,
                        default='',
                        help='The model we resume')
    parser.add_argument('--verb_module',
                        type=str,
                        default='',
                        help='pretrained verb module')
    parser.add_argument('--train_role',
                        action='store_true',
                        help='cnn fix, verb fix, role train from the scratch')
    parser.add_argument(
        '--finetune_verb',
        action='store_true',
        help='cnn fix, verb finetune, role train from the scratch')
    parser.add_argument(
        '--finetune_cnn',
        action='store_true',
        help='cnn finetune, verb finetune, role train from the scratch')
    parser.add_argument('--output_dir',
                        type=str,
                        default='./trained_models',
                        help='Location to output the model')
    parser.add_argument('--evaluate',
                        action='store_true',
                        help='Only use the testing mode')
    #todo: train role module separately with gt verbs

    args = parser.parse_args()

    batch_size = 640
    #lr = 5e-6
    lr = 0.0001
    lr_max = 5e-4
    lr_gamma = 0.1
    lr_step = 25
    clip_norm = 50
    weight_decay = 1e-4
    n_epoch = 500
    n_worker = 3

    dataset_folder = 'imSitu'
    imgset_folder = 'resized_256'

    train_set = json.load(open(dataset_folder + "/train.json"))
    encoder = imsitu_encoder(train_set)

    model = model_vsrl_small_finetune.RelationNetworks(encoder, args.gpuid)

    # To group up the features
    cnn_features, verb_features, role_features = utils.group_features(model)

    train_set = imsitu_loader(imgset_folder, train_set, encoder,
                              model.train_preprocess())

    train_loader = torch.utils.data.DataLoader(train_set,
                                               batch_size=32,
                                               shuffle=True,
                                               num_workers=n_worker)

    dev_set = json.load(open(dataset_folder + "/dev.json"))
    dev_set = imsitu_loader(imgset_folder, dev_set, encoder,
                            model.train_preprocess())
    dev_loader = torch.utils.data.DataLoader(dev_set,
                                             batch_size=32,
                                             shuffle=True,
                                             num_workers=n_worker)

    traindev_set = json.load(open(dataset_folder + "/dev.json"))
    traindev_set = imsitu_loader(imgset_folder, traindev_set, encoder,
                                 model.train_preprocess())
    traindev_loader = torch.utils.data.DataLoader(traindev_set,
                                                  batch_size=8,
                                                  shuffle=True,
                                                  num_workers=n_worker)

    utils.set_trainable(model, False)
    if args.train_role:
        print('CNN fix, Verb fix, train role from the scratch from: {}'.format(
            args.verb_module))
        args.train_all = False
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb],
                       ['conv', 'verb'])
        optimizer_select = 1
        model_name = 'cfx_vfx_rtrain'

    elif args.finetune_verb:
        print('CNN fix, Verb finetune, train role from the scratch from: {}'.
              format(args.verb_module))
        args.train_all = True
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb],
                       ['conv', 'verb'])
        optimizer_select = 2
        model_name = 'cfx_vft_rtrain'

    elif args.finetune_cnn:
        print(
            'CNN finetune, Verb finetune, train role from the scratch from: {}'
            .format(args.verb_module))
        args.train_all = True
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb],
                       ['conv', 'verb'])
        optimizer_select = 3
        model_name = 'cft_vft_rtrain'

    elif args.resume_training:
        print('Resume training from: {}'.format(args.resume_model))
        args.train_all = True
        if len(args.resume_model) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.resume_model, [model])
        optimizer_select = 0
        model_name = 'resume_all'
    else:
        if not args.evaluate:
            print('Training from the scratch.')
        optimizer_select = 0
        args.train_all = True
        model_name = 'train_full'

    optimizer = utils.get_optimizer(lr, weight_decay, optimizer_select,
                                    cnn_features, verb_features, role_features)

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)

    if args.gpuid >= 0:
        #print('GPU enabled')
        model.cuda()

    #optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                step_size=lr_step,
                                                gamma=lr_gamma)
    #gradient clipping, grad check

    if args.evaluate:
        top1, top5, val_loss = eval(model,
                                    dev_loader,
                                    encoder,
                                    args.gpuid,
                                    write_to_file=True)

        top1_avg = top1.get_average_results()
        top5_avg = top5.get_average_results()

        avg_score = top1_avg["verb"] + top1_avg["value"] + top1_avg["value-all"] + top5_avg["verb"] + \
                    top5_avg["value"] + top5_avg["value-all"]
        avg_score /= 8

        print('Dev average :{:.2f} {} {}'.format(
            avg_score * 100, utils.format_dict(top1_avg, '{:.2f}', '1-'),
            utils.format_dict(top5_avg, '{:.2f}', '5-')))

        #write results to csv file
        gt_labels = top1.gt_situation
        pred_labels = top1.predicted_situation
        verb_pred = top1.verb_pred

        with open("gt_rn_only.csv", "w") as f:
            writer = csv.writer(f)
            writer.writerows(gt_labels)

        with open("pred_rn_only.csv", "w") as f:
            writer = csv.writer(f)
            writer.writerows(pred_labels)

        with open("verbpred_rn_only.csv", "w") as f:
            writer = csv.writer(f)
            writer.writerow(['verb', 'total', 'predicted'])
            for key, value in verb_pred.items():
                writer.writerow([key, value[0], value[1]])

        print('Writing predictions to file completed !')

    else:

        print('Model training started!')
        train(model, train_loader, dev_loader, traindev_loader, optimizer,
              scheduler, n_epoch, args.output_dir, encoder, args.gpuid,
              clip_norm, lr_max, model_name, args)
def main():

    import argparse
    parser = argparse.ArgumentParser(
        description="imsitu VSRL. Training, evaluation and prediction.")
    parser.add_argument("--gpuid",
                        default=-1,
                        help="put GPU id > -1 in GPU mode",
                        type=int)
    #parser.add_argument("--command", choices = ["train", "eval", "resume", 'predict'], required = True)
    parser.add_argument('--resume_training',
                        action='store_true',
                        help='Resume training from the model [resume_model]')
    parser.add_argument('--resume_model',
                        type=str,
                        default='',
                        help='The model we resume')
    parser.add_argument('--verb_module',
                        type=str,
                        default='',
                        help='pretrained verb module')
    parser.add_argument('--train_role',
                        action='store_true',
                        help='cnn fix, verb fix, role train from the scratch')
    parser.add_argument(
        '--finetune_verb',
        action='store_true',
        help='cnn fix, verb finetune, role train from the scratch')
    parser.add_argument(
        '--finetune_cnn',
        action='store_true',
        help='cnn finetune, verb finetune, role train from the scratch')
    parser.add_argument('--output_dir',
                        type=str,
                        default='./trained_models',
                        help='Location to output the model')
    #todo: train role module separately with gt verbs

    args = parser.parse_args()

    batch_size = 640
    #lr = 5e-6
    lr = 0
    lr_max = 5e-4
    lr_gamma = 0.1
    lr_step = 25
    clip_norm = 50
    weight_decay = 1e-4
    n_epoch = 500
    n_worker = 3

    dataset_folder = 'imSitu'
    imgset_folder = 'resized_256'

    print(
        'model spec :, 256 hidden, 1e-4 init lr, 25 epoch decay, 4 layer mlp for g,2mlp f1, 3 att layers with res connections param init xavier uni 2 heads dropout 0.5 mask 6loss maskb4g transformopt'
    )

    train_set = json.load(open(dataset_folder + "/train.json"))
    encoder = imsitu_encoder(train_set)

    model = model_vsrl_finetune_selfatt_ff.RelationNetworks(
        encoder, args.gpuid)

    # To group up the features
    cnn_features, verb_features, role_features = utils.group_features(model)

    train_set = imsitu_loader(imgset_folder, train_set, encoder,
                              model.train_preprocess())

    train_loader = torch.utils.data.DataLoader(train_set,
                                               batch_size=24,
                                               shuffle=True,
                                               num_workers=n_worker)

    dev_set = json.load(open(dataset_folder + "/dev.json"))
    dev_set = imsitu_loader(imgset_folder, dev_set, encoder,
                            model.train_preprocess())
    dev_loader = torch.utils.data.DataLoader(dev_set,
                                             batch_size=24,
                                             shuffle=True,
                                             num_workers=n_worker)

    traindev_set = json.load(open(dataset_folder + "/dev.json"))
    traindev_set = imsitu_loader(imgset_folder, traindev_set, encoder,
                                 model.train_preprocess())
    traindev_loader = torch.utils.data.DataLoader(traindev_set,
                                                  batch_size=8,
                                                  shuffle=True,
                                                  num_workers=n_worker)

    utils.set_trainable(model, False)
    if args.train_role:
        print('CNN fix, Verb fix, train role from the scratch from: {}'.format(
            args.verb_module))
        args.train_all = False
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb],
                       ['conv', 'verb'])
        optimizer_select = 1
        model_name = 'cfx_vfx_rtrain'

    elif args.finetune_verb:
        print('CNN fix, Verb finetune, train role from the scratch from: {}'.
              format(args.verb_module))
        args.train_all = True
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb],
                       ['conv', 'verb'])
        optimizer_select = 2
        model_name = 'cfx_vft_rtrain'

    elif args.finetune_cnn:
        print(
            'CNN finetune, Verb finetune, train role from the scratch from: {}'
            .format(args.verb_module))
        args.train_all = True
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb],
                       ['conv', 'verb'])
        optimizer_select = 3
        model_name = 'cft_vft_rtrain'

    elif args.resume_training:
        print('Resume training from: {}'.format(args.resume_model))
        args.train_all = True
        if len(args.resume_model) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.resume_model, [model])
        optimizer_select = 0
        model_name = 'resume_all'
    else:
        print('Training from the scratch.')
        optimizer_select = 0
        args.train_all = True
        model_name = 'train_full'

    optimizer = utils.get_optimizer(lr, weight_decay, optimizer_select,
                                    cnn_features, verb_features, role_features)

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)

    if args.gpuid >= 0:
        #print('GPU enabled')
        model.cuda()

    opt = utils.NoamOpt(256, 1, 4000, optimizer)

    #optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                step_size=lr_step,
                                                gamma=lr_gamma)
    #gradient clipping, grad check

    print('Model training started!')
    train(model, train_loader, dev_loader, traindev_loader, opt, scheduler,
          n_epoch, args.output_dir, encoder, args.gpuid, clip_norm, lr_max,
          model_name, args)