def test_load_pipeline_yaml_invalid_inputs(): """ Unit test to check the load_pipeline_yaml function with invalid inputs """ workspace = object() pipeline_yaml_file = "invalid.yml" run_config = load_pipeline_yaml(workspace=workspace, pipeline_yaml_file=pipeline_yaml_file) assert run_config is None
def main(): # Loading azure credentials print("::debug::Loading azure credentials") azure_credentials = os.environ.get("INPUT_AZURE_CREDENTIALS", default="{}") try: azure_credentials = json.loads(azure_credentials) except JSONDecodeError: print( "::error::Please paste output of `az ad sp create-for-rbac --name <your-sp-name> --role contributor --scopes /subscriptions/<your-subscriptionId>/resourceGroups/<your-rg> --sdk-auth` as value of secret variable: AZURE_CREDENTIALS" ) raise AMLConfigurationException( "Incorrect or poorly formed output from azure credentials saved in AZURE_CREDENTIALS secret. See setup in https://github.com/Azure/aml-workspace/blob/master/README.md" ) # Checking provided parameters print("::debug::Checking provided parameters") validate_json(data=azure_credentials, schema=azure_credentials_schema, input_name="AZURE_CREDENTIALS") # Mask values print("::debug::Masking parameters") mask_parameter(parameter=azure_credentials.get("tenantId", "")) mask_parameter(parameter=azure_credentials.get("clientId", "")) mask_parameter(parameter=azure_credentials.get("clientSecret", "")) mask_parameter(parameter=azure_credentials.get("subscriptionId", "")) # Loading parameters file print("::debug::Loading parameters file") parameters_file = os.environ.get("INPUT_PARAMETERS_FILE", default="run.json") parameters_file_path = os.path.join(".cloud", ".azure", parameters_file) try: with open(parameters_file_path) as f: parameters = json.load(f) except FileNotFoundError: print( f"::debug::Could not find parameter file in {parameters_file_path}. Please provide a parameter file in your repository if you do not want to use default settings (e.g. .cloud/.azure/run.json)." ) parameters = {} # Checking provided parameters print("::debug::Checking provided parameters") validate_json(data=parameters, schema=parameters_schema, input_name="PARAMETERS_FILE") # Define target cloud if azure_credentials.get( "resourceManagerEndpointUrl", "").startswith("https://management.usgovcloudapi.net"): cloud = "AzureUSGovernment" elif azure_credentials.get( "resourceManagerEndpointUrl", "").startswith("https://management.chinacloudapi.cn"): cloud = "AzureChinaCloud" else: cloud = "AzureCloud" # Loading Workspace print("::debug::Loading AML Workspace") sp_auth = ServicePrincipalAuthentication( tenant_id=azure_credentials.get("tenantId", ""), service_principal_id=azure_credentials.get("clientId", ""), service_principal_password=azure_credentials.get("clientSecret", ""), cloud=cloud) config_file_path = os.environ.get("GITHUB_WORKSPACE", default=".cloud/.azure") config_file_name = "aml_arm_config.json" try: ws = Workspace.from_config(path=config_file_path, _file_name=config_file_name, auth=sp_auth) except AuthenticationException as exception: print( f"::error::Could not retrieve user token. Please paste output of `az ad sp create-for-rbac --name <your-sp-name> --role contributor --scopes /subscriptions/<your-subscriptionId>/resourceGroups/<your-rg> --sdk-auth` as value of secret variable: AZURE_CREDENTIALS: {exception}" ) raise AuthenticationException except AuthenticationError as exception: print(f"::error::Microsoft REST Authentication Error: {exception}") raise AuthenticationError except AdalError as exception: print( f"::error::Active Directory Authentication Library Error: {exception}" ) raise AdalError except ProjectSystemException as exception: print(f"::error::Workspace authorizationfailed: {exception}") raise ProjectSystemException # Create experiment print("::debug::Creating experiment") try: # Default experiment name repository_name = os.environ.get("GITHUB_REPOSITORY").split("/")[-1] branch_name = os.environ.get("GITHUB_REF").split("/")[-1] default_experiment_name = f"{repository_name}-{branch_name}" experiment = Experiment( workspace=ws, name=parameters.get("experiment_name", default_experiment_name)[:36]) except TypeError as exception: experiment_name = parameters.get("experiment", None) print( f"::error::Could not create an experiment with the specified name {experiment_name}: {exception}" ) raise AMLExperimentConfigurationException( f"Could not create an experiment with the specified name {experiment_name}: {exception}" ) except UserErrorException as exception: experiment_name = parameters.get("experiment", None) print( f"::error::Could not create an experiment with the specified name {experiment_name}: {exception}" ) raise AMLExperimentConfigurationException( f"Could not create an experiment with the specified name {experiment_name}: {exception}" ) # Loading run config print("::debug::Loading run config") run_config = None if run_config is None: # Loading run config from runconfig yaml file print("::debug::Loading run config from runconfig yaml file") run_config = load_runconfig_yaml(runconfig_yaml_file=parameters.get( "runconfig_yaml_file", "code/train/run_config.yml")) if run_config is None: # Loading run config from pipeline yaml file print("::debug::Loading run config from pipeline yaml file") run_config = load_pipeline_yaml(workspace=ws, pipeline_yaml_file=parameters.get( "pipeline_yaml_file", "code/train/pipeline.yml")) if run_config is None: # Loading run config from python runconfig file print("::debug::Loading run config from python runconfig file") run_config = load_runconfig_python( workspace=ws, runconfig_python_file=parameters.get("runconfig_python_file", "code/train/run_config.py"), runconfig_python_function_name=parameters.get( "runconfig_python_function_name", "main")) if run_config is None: # Loading values for errors pipeline_yaml_file = parameters.get("pipeline_yaml_file", "code/train/pipeline.yml") runconfig_yaml_file = parameters.get("runconfig_yaml_file", "code/train/run_config.yml") runconfig_python_file = parameters.get("runconfig_python_file", "code/train/run_config.py") runconfig_python_function_name = parameters.get( "runconfig_python_function_name", "main") print( f"::error::Error when loading runconfig yaml definition your repository (Path: /{runconfig_yaml_file})." ) print( f"::error::Error when loading pipeline yaml definition your repository (Path: /{pipeline_yaml_file})." ) print( f"::error::Error when loading python script or function in your repository which defines the experiment config (Script path: '/{runconfig_python_file}', Function: '{runconfig_python_function_name}()')." ) print( "::error::You have to provide either a yaml definition for your run, a yaml definition of your pipeline or a python script, which returns a runconfig (Pipeline, ScriptRunConfig, AutoMlConfig, Estimator, etc.). Please read the documentation for more details." ) raise AMLExperimentConfigurationException( "You have to provide a yaml definition for your run, a yaml definition of your pipeline or a python script, which returns a runconfig. Please read the documentation for more details." ) # Submit run config print("::debug::Submitting experiment config") try: # Defining default tags print("::debug::Defining default tags") default_tags = { "GITHUB_ACTOR": os.environ.get("GITHUB_ACTOR"), "GITHUB_REPOSITORY": os.environ.get("GITHUB_REPOSITORY"), "GITHUB_SHA": os.environ.get("GITHUB_SHA"), "GITHUB_REF": os.environ.get("GITHUB_REF") } run = experiment.submit(config=run_config, tags=dict(parameters.get("tags", {}), **default_tags)) except AzureMLException as exception: print( f"::error::Could not submit experiment config. Your script passed object of type {type(run_config)}. Object must be correctly configured and of type e.g. estimator, pipeline, etc.: {exception}" ) raise AMLExperimentConfigurationException( f"Could not submit experiment config. Your script passed object of type {type(run_config)}. Object must be correctly configured and of type e.g. estimator, pipeline, etc.: {exception}" ) except TypeError as exception: print( f"::error::Could not submit experiment config. Your script passed object of type {type(run_config)}. Object must be correctly configured and of type e.g. estimator, pipeline, etc.: {exception}" ) raise AMLExperimentConfigurationException( f"Could not submit experiment config. Your script passed object of type {type(run_config)}. Object must be correctly configured and of type e.g. estimator, pipeline, etc.: {exception}" ) # Create outputs print("::debug::Creating outputs") print(f"::set-output name=experiment_name::{run.experiment.name}") print(f"::set-output name=run_id::{run.id}") print(f"::set-output name=run_url::{run.get_portal_url()}") # Waiting for run to complete print("::debug::Waiting for run to complete") if parameters.get("wait_for_completion", True): run.wait_for_completion(show_output=True) # Creating additional outputs of finished run run_metrics = run.get_metrics(recursive=True) print(f"::set-output name=run_metrics::{run_metrics}") run_metrics_markdown = convert_to_markdown(run_metrics) print( f"::set-output name=run_metrics_markdown::{run_metrics_markdown}") # Download artifacts if enabled if parameters.get("download_artifacts", False): # Defining artifacts folder print("::debug::Defining artifacts folder") root_path = os.environ.get("GITHUB_WORKSPACE", default=None) folder_name = f"aml_artifacts_{run.id}" artifact_path = os.path.join(root_path, folder_name) # Downloading artifacts print("::debug::Downloading artifacts") run.download_files( output_directory=os.path.join(artifact_path, "parent")) children = run.get_children(recursive=True) for i, child in enumerate(children): child.download_files( output_directory=os.path.join(artifact_path, f"child_{i}")) # Creating additional outputs print(f"::set-output name=artifact_path::{artifact_path}") # Publishing pipeline print("::debug::Publishing pipeline") if type(run) is PipelineRun and parameters.get("publish_pipeline", False): # Default pipeline name repository_name = os.environ.get("GITHUB_REPOSITORY").split("/")[-1] branch_name = os.environ.get("GITHUB_REF").split("/")[-1] default_pipeline_name = f"{repository_name}-{branch_name}" published_pipeline = run.publish_pipeline( name=parameters.get("pipeline_name", default_pipeline_name), description="Pipeline registered by GitHub Run Action", version=parameters.get("pipeline_version", None), continue_on_step_failure=parameters.get( "pipeline_continue_on_step_failure", False)) # Creating additional outputs print( f"::set-output name=published_pipeline_id::{published_pipeline.id}" ) print( f"::set-output name=published_pipeline_status::{published_pipeline.status}" ) print( f"::set-output name=published_pipeline_endpoint::{published_pipeline.endpoint}" ) elif parameters.get("publish_pipeline", False): print( "::error::Could not register pipeline because you did not pass a pipeline to the action" ) print("::debug::Successfully finished Azure Machine Learning Train Action")
def submitRun(ws, parameters): # Create experiment print("::debug::Creating experiment") try: # Default experiment name repository_name = os.environ.get("GITHUB_REPOSITORY").split("/")[-1] branch_name = os.environ.get("GITHUB_REF").split("/")[-1] default_experiment_name = f"{repository_name}-{branch_name}" experiment = Experiment( workspace=ws, name=parameters.get("experiment_name", default_experiment_name)[:36] ) except TypeError as exception: experiment_name = parameters.get("experiment", None) print(f"::error::Could not create an experiment with the specified name {experiment_name}: {exception}") raise AMLExperimentConfigurationException(f"Could not create an experiment with the specified name {experiment_name}: {exception}") except UserErrorException as exception: experiment_name = parameters.get("experiment", None) print(f"::error::Could not create an experiment with the specified name {experiment_name}: {exception}") raise AMLExperimentConfigurationException(f"Could not create an experiment with the specified name {experiment_name}: {exception}") # Loading run config print("::debug::Loading run config") run_config = None if run_config is None: # Loading run config from runconfig yaml file print("::debug::Loading run config from runconfig yaml file") run_config = load_runconfig_yaml( runconfig_yaml_file=parameters.get("runconfig_yaml_file", "code/train/run_config.yml") ) if run_config is None: # Loading run config from pipeline yaml file print("::debug::Loading run config from pipeline yaml file") run_config = load_pipeline_yaml( workspace=ws, pipeline_yaml_file=parameters.get("pipeline_yaml_file", "code/train/pipeline.yml") ) if run_config is None: # Loading run config from python runconfig file print("::debug::Loading run config from python runconfig file") run_config = load_runconfig_python( workspace=ws, runconfig_python_file=parameters.get("runconfig_python_file", "code/train/run_config.py"), runconfig_python_function_name=parameters.get("runconfig_python_function_name", "main") ) if run_config is None: # Loading values for errors pipeline_yaml_file = parameters.get("pipeline_yaml_file", "code/train/pipeline.yml") runconfig_yaml_file = parameters.get("runconfig_yaml_file", "code/train/run_config.yml") runconfig_python_file = parameters.get("runconfig_python_file", "code/train/run_config.py") runconfig_python_function_name = parameters.get("runconfig_python_function_name", "main") print(f"::error::Error when loading runconfig yaml definition your repository (Path: /{runconfig_yaml_file}).") print(f"::error::Error when loading pipeline yaml definition your repository (Path: /{pipeline_yaml_file}).") print(f"::error::Error when loading python script or function in your repository which defines the experiment config (Script path: '/{runconfig_python_file}', Function: '{runconfig_python_function_name}()').") print("::error::You have to provide a yaml definition for your run, a yaml definition of your pipeline or a python script, which returns a runconfig. Please read the documentation for more details.") raise AMLExperimentConfigurationException("You have to provide a yaml definition for your run, a yaml definition of your pipeline or a python script, which returns a runconfig. Please read the documentation for more details.") # Submit run config print("::debug::Submitting experiment config") try: run = experiment.submit( config=run_config, tags=parameters.get("tags", {}) ) except AzureMLException as exception: print(f"::error::Could not submit experiment config. Your script passed object of type {type(run_config)}. Object must be correctly configured and of type e.g. estimator, pipeline, etc.: {exception}") raise AMLExperimentConfigurationException(f"Could not submit experiment config. Your script passed object of type {type(run_config)}. Object must be correctly configured and of type e.g. estimator, pipeline, etc.: {exception}") except TypeError as exception: print(f"::error::Could not submit experiment config. Your script passed object of type {type(run_config)}. Object must be correctly configured and of type e.g. estimator, pipeline, etc.: {exception}") raise AMLExperimentConfigurationException(f"Could not submit experiment config. Your script passed object of type {type(run_config)}. Object must be correctly configured and of type e.g. estimator, pipeline, etc.: {exception}") # Create outputs print("::debug::Creating outputs") print(f"::set-output name=experiment_name::{run.experiment.name}") print(f"::set-output name=run_id::{run.id}") print(f"::set-output name=run_url::{run.get_portal_url()}") # we can publish the pipeline without waiting for run to be finished. need to verify it # Publishing pipeline print("::debug::Publishing pipeline") if type(run) is PipelineRun and parameters.get("publish_pipeline", False): # Default pipeline name repository_name = os.environ.get("GITHUB_REPOSITORY").split("/")[-1] branch_name = os.environ.get("GITHUB_REF").split("/")[-1] default_pipeline_name = f"{repository_name}-{branch_name}" published_pipeline = run.publish_pipeline( name=parameters.get("pipeline_name", default_pipeline_name), description="Pipeline registered by GitHub Run Action", version=parameters.get("pipeline_version", None), continue_on_step_failure=parameters.get("pipeline_continue_on_step_failure", False) ) # Creating additional outputs print(f"::set-output name=published_pipeline_id::{published_pipeline.id}") print(f"::set-output name=published_pipeline_status::{published_pipeline.status}") print(f"::set-output name=published_pipeline_endpoint::{published_pipeline.endpoint}") elif parameters.get("publish_pipeline", False): print(f"::error::Could not register pipeline because you did not pass a pipeline to the action") print("::debug::Successfully finished Azure Machine Learning Train Action") wait_for_completion = False # as we don't want to wait here, we just return the run object from here. if parameters.get("wait_for_completion", True): wait_for_completion = True return (run, wait_for_completion)