loss = F.cross_entropy(logits, target) pred = logits.argmax(dim=1, keepdim=True) LOG_temp['acc'] += [ pred.eq(target.view_as(pred)).sum().item() / pred.size(0) ] LOG_temp['cls_loss'] += [loss.item()] LOG_temp['gen_loss'] += [ F.mse_loss(x_recon, data).item() ] current_acc[task_t] = mean_fn(LOG_temp['acc']) logging_per_task( wandb, LOG, run, mode, 'acc', task, task_t, np.round(np.mean(LOG_temp['acc']), 2)) logging_per_task( wandb, LOG, run, mode, 'cls_loss', task, task_t, np.round(np.mean(LOG_temp['cls_loss']), 2)) logging_per_task( wandb, LOG, run, mode, 'gen_loss', task, task_t, np.round(np.mean(LOG_temp['gen_loss']), 2)) print('\n{}:'.format(mode)) print(LOG[run][mode]['acc']) # store the best accuracy seen so far to all the tasks best_acc_yet[mode] = np.maximum(
x_mean, data, z_mu, z_var, z0, zk, ldj, args, beta=args.beta) LOG_temp['gen_loss'] += [gen_loss.item()] # End Minibatch Eval Loop #------------------- logging_per_task(wandb, LOG, run, mode, 'acc', task, task_t, np.round(np.mean(LOG_temp['acc']), 2)) logging_per_task( wandb, LOG, run, mode, 'cls_loss', task, task_t, np.round(np.mean(LOG_temp['cls_loss']), 2)) logging_per_task( wandb, LOG, run, mode, 'gen_loss', task, task_t, np.round(np.mean(LOG_temp['gen_loss']), 2)) # End Task Eval Loop #------------------- print('\n{}:'.format(mode)) print(LOG[run][mode]['acc']) # End Eval Loop