n2 = len(df[df["上报时间"].dt.date == day]) # 当天案件总数 # 自行处理的案件总数 n3 = len(df_self) # 分类统计 s = df.groupby("小类名称").count()["上报时间"] s["案件总数"] = n1 s["当天案件总数"] = n2 s["自行处理案件总数"] = n3 s["日期"] = day s["街道"] = area s["原指标"] = gt res[j] = s j += 1 res.fillna(0, inplace=True) return res.T if __name__ == "__main__": # source_file = '../queryResult_2019-09-10_145030_zs341.xlsx' source_file = '../queryResult_2019-09-10_145030.npy' gt_file = "../source_data/ZS321 - 环境问题指数.xlsx" df2 = convert_to_new_dataframe(source_file, gt_file, write_path='../tmp_zs321') df2.to_excel('../zs321_20190923.xlsx') # regression regression_test('../zs321_20190923.xlsx', 'zs321')
# TODO: 增加当天内完成案件的权重(比如自行处理案件因当天完成, 相比第二天完成的案件, 少了一晚上的执行分数) w1 = 60 # 自行处理案件总数, 认为w1分钟为完成一个自行处理案件所需的平均时间 w2 = 0 # 其他案件总数, 不考评 w3 = 0 # 强制结案总数, 暂不考评(没有好的思路, 且强制结案会同时生成一个新的案件) w4 = 0 # 立案耗时总长(分钟), 不考评 w5 = 1 # 计划内耗时总长(分钟) w6 = -1 # 计划外耗时总长(分钟) df['新评分'] = (df["自行处理案件总数"] * w1 + df["其他案件总数"] * w2 + df["强制结案总数"] * w3 + df["立案耗时总长(分钟)"] * w4 + df["计划内耗时总长(分钟)"] * w5 + df["计划外耗时总长(分钟)"] * w6) / 1000 return df if __name__ == "__main__": # source_file = '../queryResult_2019-09-10_145030.xlsx' source_file = '../queryResult_2019-09-10_145030.npy' gt_file = "../source_data/ZS222 - 处置效能指数.xlsx" df2 = convert_to_new_dataframe(source_file, gt_file, write_path='../tmp_zs222') df2.to_excel('../zs222_20190923.xlsx') df3_file_path = '../zs222_20190923.xlsx' df3 = cal_index(df3_file_path) df3 = df3.drop('Unnamed: 0', 1) df3.to_excel(df3_file_path) # regression regression_test('../zs222_20190923.xlsx')
s["按时完成"] = n1a s["延期完成"] = n1b s["当天案件总数"] = n2 s["自行处理案件总数"] = n3 s["日期"] = day s["街道"] = area s["原指标"] = gt lst.append(s) res = pd.concat(lst, axis=1, sort=False) res.fillna(0, inplace=True) res = res.T # https://stackoverflow.com/questions/14507794/pandas-how-to-flatten-a-hierarchical-index-in-columns @Andy Hayden res.columns = [' '.join(col).strip() for col in res.columns.values] res.reset_index(inplace=True, drop=True) return res if __name__ == "__main__": # source_file = '../queryResult_2019-09-10_145030_zs341.xlsx' source_file = '../queryResult_2019-09-10_145030.npy' gt_file = "../source_data/ZS341 - 服务需求指数.xlsx" df2 = convert_to_new_dataframe(source_file, gt_file, write_path='../tmp_zs341') df2.to_excel('../zs341_20190923.xlsx') # regression regression_test('../zs341_20190923.xlsx')