def plot_phi_reconstruction_results_for_MIP(table, N):
    THETA = deg2rad(22.5)
    DTHETA = deg2rad(5.)

    events = table.readWhere('(min_n134 >= N) & (abs(reference_theta - THETA) <= DTHETA)')
    sim_phi = events['reference_phi']
    r_phi = events['reconstructed_phi']

    figure()
    plot_2d_histogram(rad2deg(sim_phi), rad2deg(r_phi), 180)
    xlabel(r"$\phi_K$ [deg]")
    ylabel(r"$\phi_H$ [deg]")
    title(r"$N_{MIP} \geq %d, \quad \theta = 22.5^\circ \pm %d^\circ$" % (N, rad2deg(DTHETA)))

    utils.saveplot(N)

    graph = artist.GraphArtist()
    bins = linspace(-180, 180, 73)
    H, x_edges, y_edges = histogram2d(rad2deg(sim_phi), rad2deg(r_phi),
                                      bins=bins)
    graph.histogram2d(H, x_edges, y_edges, type='reverse_bw')
    graph.set_xlabel(r'$\phi_K$ [\si{\degree}]')
    graph.set_ylabel(r'$\phi_H$ [\si{\degree}]')
    graph.set_xticks(range(-180, 181, 90))
    graph.set_yticks(range(-180, 181, 90))
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
def plot_uncertainty_core_distance(table):
    N = 2
    THETA = deg2rad(22.5)
    DTHETA = deg2rad(5.)
    DN = .5
    DR = 10
    LOGENERGY = 15
    DLOGENERGY = .5

    figure()
    x, y, y2 = [], [], []
    for R in range(0, 81, 20):
        x.append(R)
        events = table.readWhere('(abs(min_n134 - N) <= DN) & (abs(reference_theta - THETA) <= DTHETA) & (abs(r - R) <= DR) & (abs(log10(k_energy) - LOGENERGY) <= DLOGENERGY)')
        print len(events),
        errors = events['reference_theta'] - events['reconstructed_theta']
        # Make sure -pi < errors < pi
        errors = (errors + pi) % (2 * pi) - pi
        errors2 = events['reference_phi'] - events['reconstructed_phi']
        # Make sure -pi < errors2 < pi
        errors2 = (errors2 + pi) % (2 * pi) - pi
        #y.append(std(errors))
        #y2.append(std(errors2))
        y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2)
        y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2)

    print
    print "R: theta_std, phi_std"
    for u, v, w in zip(x, y, y2):
        print u, v, w
    print

#    # Simulation data
    sx, sy, sy2 = loadtxt(os.path.join(DATADIR, 'DIR-plot_uncertainty_core_distance.txt'))

    graph = GraphArtist()

    # Plots
    plot(x, rad2deg(y), '^-', label="Theta")
    graph.plot(x[:-1], rad2deg(y[:-1]), mark='o')
    plot(sx, rad2deg(sy), '^-', label="Theta (sim)")
    graph.plot(sx[:-1], rad2deg(sy[:-1]), mark='square')
    plot(x, rad2deg(y2), 'v-', label="Phi")
    graph.plot(x[:-1], rad2deg(y2[:-1]), mark='*')
    plot(sx, rad2deg(sy2), 'v-', label="Phi (sim)")
    graph.plot(sx[:-1], rad2deg(sy2[:-1]), mark='square*')

    # Labels etc.
    xlabel("Core distance [m] $\pm %d$" % DR)
    graph.set_xlabel(r"Core distance [\si{\meter}] $\pm \SI{%d}{\meter}$" % DR)
    ylabel("Angle reconstruction uncertainty [deg]")
    graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]")
    title(r"$N_{MIP} = %d \pm %.1f, \theta = 22.5^\circ \pm %d^\circ, %.1f \leq \log(E) \leq %.1f$" % (N, DN, rad2deg(DTHETA), LOGENERGY - DLOGENERGY, LOGENERGY + DLOGENERGY))
    ylim(ymin=0)
    graph.set_ylimits(min=0)
    xlim(-2, 62)
    legend(numpoints=1, loc='best')
    utils.saveplot()
    artist.utils.save_graph(graph, dirname='plots')
    print
def hists_core_distance_vs_time():
    plt.figure()

    sim = data.root.showers.E_1PeV.zenith_0
    electrons = sim.electrons

    bins = np.logspace(0, 2, 5)
    for low, high in zip(bins[:-1], bins[1:]):
        sel = electrons.readWhere(
            '(low < core_distance) & (core_distance <= high)')
        arrival_time = sel[:]['arrival_time']
        plt.hist(arrival_time,
                 bins=np.logspace(-2, 3, 50),
                 histtype='step',
                 label="%.2f <= log10(R) < %.2f" %
                 (np.log10(low), np.log10(high)))

    plt.xscale('log')

    plt.xlabel("Arrival Time [ns]")
    plt.ylabel("Count")
    plt.legend(loc='upper left')

    utils.title("Shower front timing structure")
    utils.saveplot()
예제 #4
0
def plot_uncertainty_core_distance(table):
    N = 2
    THETA = deg2rad(22.5)
    DTHETA = deg2rad(5.)
    DN = .5
    DR = 10
    LOGENERGY = 15
    DLOGENERGY = .5

    figure()
    x, y, y2 = [], [], []
    for R in range(0, 81, 20):
        x.append(R)
        events = table.read_where('(abs(min_n134 - N) <= DN) & (abs(reference_theta - THETA) <= DTHETA) & (abs(r - R) <= DR) & (abs(log10(k_energy) - LOGENERGY) <= DLOGENERGY)')
        print len(events),
        errors = events['reference_theta'] - events['reconstructed_theta']
        # Make sure -pi < errors < pi
        errors = (errors + pi) % (2 * pi) - pi
        errors2 = events['reference_phi'] - events['reconstructed_phi']
        # Make sure -pi < errors2 < pi
        errors2 = (errors2 + pi) % (2 * pi) - pi
        #y.append(std(errors))
        #y2.append(std(errors2))
        y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2)
        y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2)

    print
    print "R: theta_std, phi_std"
    for u, v, w in zip(x, y, y2):
        print u, v, w
    print

#    # Simulation data
    sx, sy, sy2 = loadtxt(os.path.join(DATADIR, 'DIR-plot_uncertainty_core_distance.txt'))

    graph = GraphArtist()

    # Plots
    plot(x, rad2deg(y), '^-', label="Theta")
    graph.plot(x[:-1], rad2deg(y[:-1]), mark='o')
    plot(sx, rad2deg(sy), '^-', label="Theta (sim)")
    graph.plot(sx[:-1], rad2deg(sy[:-1]), mark='square')
    plot(x, rad2deg(y2), 'v-', label="Phi")
    graph.plot(x[:-1], rad2deg(y2[:-1]), mark='*')
    plot(sx, rad2deg(sy2), 'v-', label="Phi (sim)")
    graph.plot(sx[:-1], rad2deg(sy2[:-1]), mark='square*')

    # Labels etc.
    xlabel("Core distance [m] $\pm %d$" % DR)
    graph.set_xlabel(r"Core distance [\si{\meter}] $\pm \SI{%d}{\meter}$" % DR)
    ylabel("Angle reconstruction uncertainty [deg]")
    graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]")
    title(r"$N_{MIP} = %d \pm %.1f, \theta = 22.5^\circ \pm %d^\circ, %.1f \leq \log(E) \leq %.1f$" % (N, DN, rad2deg(DTHETA), LOGENERGY - DLOGENERGY, LOGENERGY + DLOGENERGY))
    ylim(ymin=0)
    graph.set_ylimits(min=0)
    xlim(-2, 62)
    legend(numpoints=1, loc='best')
    utils.saveplot()
    artist.utils.save_graph(graph, dirname='plots')
    print
예제 #5
0
def plot_scatter_reconstructed_core(table, N=None):
    # Make sure to get a *copy*
    figsize = list(rcParams['figure.figsize'])
    figsize[0] = figsize[1] * 2

    figure(figsize=figsize)

    station = table.attrs.cluster.stations[0]
    subplot(121)
    x, y = table.col('reference_core_pos')[:N].T
    #scatter(x, y, c='b', s=1, edgecolor='none', zorder=1)
    plot(x, y, ',', c='b', markeredgecolor='b', zorder=1)
    for detector in station.detectors:
        x, y = detector.get_xy_coordinates()
        plt.scatter(x, y, c='r', s=20, edgecolor='none', zorder=2)
    xlabel("Distance [m]")
    ylabel("Distance [m]")
    xlim(-60, 60)
    ylim(-60, 60)
    title("simulated")

    subplot(122)
    x, y = table.col('reconstructed_core_pos')[:N].T
    #scatter(x, y, c='b', s=1, edgecolor='none', zorder=1)
    plot(x, y, ',', c='b', markeredgecolor='b', zorder=1)
    for detector in station.detectors:
        x, y = detector.get_xy_coordinates()
        plt.scatter(x, y, c='r', s=20, edgecolor='none', zorder=2)
    xlabel("Distance [m]")
    ylabel("Distance [m]")
    xlim(-60, 60)
    ylim(-60, 60)
    title("reconstructed")

    utils.saveplot()
예제 #6
0
def plot_core_pos_uncertainty_vs_R(table):
    figure()

    x, y = table.col('reference_core_pos').T
    x2, y2 = table.col('reconstructed_core_pos').T
    d = sqrt((x - x2)**2 + (y - y2)**2)

    r = table.col('r')

    bins = linspace(0, 50, 41)
    x, d25, d50, d75 = [], [], [], []
    for low, high in zip(bins[:-1], bins[1:]):
        sel = d.compress((low <= r) & (r < high))

        if len(sel) > 0:
            x.append((low + high) / 2)
            d25.append(scoreatpercentile(sel, 25))
            d50.append(scoreatpercentile(sel, 50))
            d75.append(scoreatpercentile(sel, 75))

    fill_between(x, d25, d75, color='0.75')
    plot(x, d50, 'o-', color='black')

    xlabel("Core distance [m]")
    ylabel("Core position uncertainty [m]")
    utils.saveplot()
예제 #7
0
def plot_phi_reconstruction_results_for_MIP(table, N):
    THETA = deg2rad(22.5)
    DTHETA = deg2rad(5.)

    events = table.readWhere(
        '(min_n134 >= N) & (abs(reference_theta - THETA) <= DTHETA)')
    sim_phi = events['reference_phi']
    r_phi = events['reconstructed_phi']

    figure()
    plot_2d_histogram(rad2deg(sim_phi), rad2deg(r_phi), 180)
    xlabel(r"$\phi_K$ [deg]")
    ylabel(r"$\phi_H$ [deg]")
    title(r"$N_{MIP} \geq %d, \quad \theta = 22.5^\circ \pm %d^\circ$" %
          (N, rad2deg(DTHETA)))

    utils.saveplot(N)

    graph = artist.GraphArtist()
    bins = linspace(-180, 180, 73)
    H, x_edges, y_edges = histogram2d(rad2deg(sim_phi),
                                      rad2deg(r_phi),
                                      bins=bins)
    graph.histogram2d(H, x_edges, y_edges, type='reverse_bw')
    graph.set_xlabel(r'$\phi_K$ [\si{\degree}]')
    graph.set_ylabel(r'$\phi_H$ [\si{\degree}]')
    graph.set_xticks(range(-180, 181, 90))
    graph.set_yticks(range(-180, 181, 90))
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
예제 #8
0
def plot_scatter_reconstructed_core(table, N=None):
    # Make sure to get a *copy*
    figsize = list(rcParams['figure.figsize'])
    figsize[0] = figsize[1] * 2

    figure(figsize=figsize)

    station = table.attrs.cluster.stations[0]
    subplot(121)
    x, y = table.col('reference_core_pos')[:N].T
    #scatter(x, y, c='b', s=1, edgecolor='none', zorder=1)
    plot(x, y, ',', c='b', markeredgecolor='b', zorder=1)
    for detector in station.detectors:
        x, y = detector.get_xy_coordinates()
        plt.scatter(x, y, c='r', s=20, edgecolor='none', zorder=2)
    xlabel("Distance [m]")
    ylabel("Distance [m]")
    xlim(-60, 60)
    ylim(-60, 60)
    title("simulated")

    subplot(122)
    x, y = table.col('reconstructed_core_pos')[:N].T
    #scatter(x, y, c='b', s=1, edgecolor='none', zorder=1)
    plot(x, y, ',', c='b', markeredgecolor='b', zorder=1)
    for detector in station.detectors:
        x, y = detector.get_xy_coordinates()
        plt.scatter(x, y, c='r', s=20, edgecolor='none', zorder=2)
    xlabel("Distance [m]")
    ylabel("Distance [m]")
    xlim(-60, 60)
    ylim(-60, 60)
    title("reconstructed")

    utils.saveplot()
예제 #9
0
def plot_core_pos_uncertainty_vs_R(table):
    figure()

    x, y = table.col('reference_core_pos').T
    x2, y2 = table.col('reconstructed_core_pos').T
    d = sqrt((x - x2) ** 2 + (y - y2) ** 2)

    r = table.col('r')

    bins = linspace(0, 50, 41)
    x, d25, d50, d75 = [], [], [], []
    for low, high in zip(bins[:-1], bins[1:]):
        sel = d.compress((low <= r) & (r < high))

        if len(sel) > 0:
            x.append((low + high) / 2)
            d25.append(scoreatpercentile(sel, 25))
            d50.append(scoreatpercentile(sel, 50))
            d75.append(scoreatpercentile(sel, 75))

    fill_between(x, d25, d75, color='0.75')
    plot(x, d50, 'o-', color='black')

    xlabel("Core distance [m]")
    ylabel("Core position uncertainty [m]")
    utils.saveplot()
def plot_sciencepark_cluster():
    stations = range(501, 507)
    cluster = clusters.ScienceParkCluster(stations)

    figure()
    x_list, y_list = [], []
    x_stations, y_stations = [], []
    for station in cluster.stations:
        x_detectors, y_detectors = [], []
        for detector in station.detectors:
            x, y = detector.get_xy_coordinates()
            x_detectors.append(x)
            y_detectors.append(y)
            scatter(x, y, c='black', s=3)
        x_list.extend(x_detectors)
        y_list.extend(y_detectors)
        x_stations.append(mean(x_detectors))
        y_stations.append(mean(y_detectors))
    axis('equal')

    cluster = clusters.ScienceParkCluster([501, 503, 506])
    pos = []
    for station in cluster.stations:
        x, y, alpha = station.get_xyalpha_coordinates()
        pos.append((x, y))
    for (x0, y0), (x1, y1) in itertools.combinations(pos, 2):
        plot([x0, x1], [y0, y1], 'gray')

    utils.savedata([x_list, y_list])
    utils.saveplot()

    artist.utils.save_data([x_list, y_list], suffix='detectors',
                           dirname='plots')
    artist.utils.save_data([stations, x_stations, y_stations],
                           suffix='stations', dirname='plots')
def plot_phi_reconstruction_results_for_MIP(group, N):
    table = group.E_1PeV.zenith_22_5

    events = table.readWhere('min_n134 >= %d' % N)
    sim_phi = events['reference_phi']
    r_phi = events['reconstructed_phi']

    figure()
    plot_2d_histogram(rad2deg(sim_phi), rad2deg(r_phi), 180)
    xlabel(r"$\phi_{simulated}$ [deg]")
    ylabel(r"$\phi_{reconstructed}$ [deg]")
    #title(r"$N_{MIP} \geq %d, \quad \theta = 22.5^\circ$" % N)
    utils.saveplot(N)

    graph = artist.GraphArtist()
    bins = linspace(-180, 180, 73)
    H, x_edges, y_edges = histogram2d(rad2deg(sim_phi),
                                      rad2deg(r_phi),
                                      bins=bins)
    graph.histogram2d(H, x_edges, y_edges, type='reverse_bw')
    graph.set_xlabel(r'$\phi_\mathrm{sim}$ [\si{\degree}]')
    graph.set_ylabel(r'$\phi_\mathrm{rec}$ [\si{\degree}]')
    graph.set_xticks(range(-180, 181, 90))
    graph.set_yticks(range(-180, 181, 90))
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
예제 #12
0
def plot_fsot_vs_lint_for_zenith(fsot, lint):
    bins = linspace(0, 35, 21)

    min_N = 1

    x, f_y, f_y2, l_y, l_y2 = [], [], [], [], []
    for low, high in zip(bins[:-1], bins[1:]):
        rad_low = deg2rad(low)
        rad_high = deg2rad(high)

        query = '(min_n134 >= min_N) & (rad_low <= reference_theta) & (reference_theta < rad_high)'
        f_sel = fsot.readWhere(query)
        l_sel = lint.readWhere(query)

        errors = f_sel['reconstructed_phi'] - f_sel['reference_phi']
        errors2 = f_sel['reconstructed_theta'] - f_sel['reference_theta']
        #f_y.append(std(errors))
        #f_y2.append(std(errors2))
        f_y.append(
            (scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) /
            2)
        f_y2.append(
            (scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) /
            2)

        errors = l_sel['reconstructed_phi'] - l_sel['reference_phi']
        errors2 = l_sel['reconstructed_theta'] - l_sel['reference_theta']
        #l_y.append(std(errors))
        #l_y2.append(std(errors2))
        l_y.append(
            (scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) /
            2)
        l_y2.append(
            (scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) /
            2)

        x.append((low + high) / 2)

        print x[-1], len(f_sel), len(l_sel)

    clf()
    plot(x, rad2deg(f_y), label="FSOT phi")
    plot(x, rad2deg(f_y2), label="FSOT theta")
    plot(x, rad2deg(l_y), label="LINT phi")
    plot(x, rad2deg(l_y2), label="LINT theta")
    legend()
    xlabel("Shower zenith angle [deg]")
    ylabel("Angle reconstruction uncertainty [deg]")
    title(r"$N_{MIP} \geq %d$" % min_N)
    utils.saveplot()

    graph = GraphArtist()
    graph.plot(x, rad2deg(f_y), mark=None)
    graph.plot(x, rad2deg(l_y), mark=None, linestyle='dashed')
    graph.plot(x, rad2deg(f_y2), mark=None)
    graph.plot(x, rad2deg(l_y2), mark=None, linestyle='dashed')
    graph.set_xlabel(r"Shower zenith angle [\si{\degree}]")
    graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]")
    artist.utils.save_graph(graph, dirname='plots')
예제 #13
0
def median_core_distance_vs_time():
    plt.figure()
    plot_and_fit_statistic(lambda a: scoreatpercentile(a, 25))
    plot_and_fit_statistic(lambda a: scoreatpercentile(a, 75))

    utils.title("Shower front timing structure (25, 75 %)")
    utils.saveplot()
    plt.xlabel("Core distance [m]")
    plt.ylabel("Median arrival time [ns]")
    legend(loc='lower right')
예제 #14
0
def median_core_distance_vs_time():
    plt.figure()
    plot_and_fit_statistic(lambda a: scoreatpercentile(a, 25))
    plot_and_fit_statistic(lambda a: scoreatpercentile(a, 75))

    utils.title("Shower front timing structure (25, 75 %)")
    utils.saveplot()
    plt.xlabel("Core distance [m]")
    plt.ylabel("Median arrival time [ns]")
    legend(loc='lower right')
예제 #15
0
    def plot_spectrum_fit_chisq(self):
        global integrals

        if 'integrals' not in globals():
            events = self.data.root.hisparc.cluster_kascade.station_601.events
            integrals = events.col('integrals')[:, 0]

        bins = np.linspace(0, RANGE_MAX, N_BINS + 1)
        n, bins = np.histogram(integrals, bins=bins)
        x = (bins[:-1] + bins[1:]) / 2

        p_gamma, p_landau = self.full_spectrum_fit(
            x, n, (1., 1.), (5e3 / .32, 3.38 / 5000, 1.))
        print "FULL FIT"
        print p_gamma, p_landau

        print "charged fraction:", self.calc_charged_fraction(
            x, n, p_gamma, p_landau)
        landaus = scintillator.conv_landau_for_x(x, *p_landau)
        gammas = self.gamma_func(x, *p_gamma)
        fit = landaus + gammas

        x_trunc = x.compress((LOW <= x) & (x < HIGH))
        n_trunc = n.compress((LOW <= x) & (x < HIGH))
        fit_trunc = fit.compress((LOW <= x) & (x < HIGH))

        chisq, pvalue = stats.chisquare(n_trunc, fit_trunc, ddof=5)
        chisq /= (len(n_trunc) - 1 - 5)
        print "Chi-square statistic:", chisq, pvalue

        plt.figure()

        plt.plot(x * VNS, n)
        self.plot_landau_and_gamma(x, p_gamma, p_landau)
        #plt.plot(x_trunc * VNS, fit_trunc, linewidth=4)

        plt.axvline(LOW * VNS)
        plt.axvline(HIGH * VNS)

        plt.xlabel("Pulse integral [V ns]")
        plt.ylabel("Count")
        plt.yscale('log')
        plt.xlim(0, 20)
        plt.ylim(1e2, 1e5)
        plt.title(r"$\chi^2_{red}$: %.2f, p-value: %.2e" % (chisq, pvalue))
        utils.saveplot()

        plt.figure()
        plt.plot(x_trunc * VNS, n_trunc - fit_trunc)
        plt.axhline(0)
        plt.xlabel("Pulse integral [V ns]")
        plt.ylabel("Data - Fit")
        plt.title(r"$\chi^2_{red}$: %.2f, p-value: %.2e" % (chisq, pvalue))
        utils.saveplot(suffix='residuals')
    def plot_spectrum_fit_chisq(self):
        global integrals

        if 'integrals' not in globals():
            events = self.data.root.hisparc.cluster_kascade.station_601.events
            integrals = events.col('integrals')[:, 0]

        bins = np.linspace(0, RANGE_MAX, N_BINS + 1)
        n, bins = np.histogram(integrals, bins=bins)
        x = (bins[:-1] + bins[1:]) / 2

        p_gamma, p_landau = self.full_spectrum_fit(x, n, (1., 1.),
                                                   (5e3 / .32, 3.38 / 5000, 1.))
        print "FULL FIT"
        print p_gamma, p_landau

        print "charged fraction:", self.calc_charged_fraction(x, n, p_gamma, p_landau)
        landaus = scintillator.conv_landau_for_x(x, *p_landau)
        gammas = self.gamma_func(x, *p_gamma)
        fit = landaus + gammas

        x_trunc = x.compress((LOW <= x) & (x < HIGH))
        n_trunc = n.compress((LOW <= x) & (x < HIGH))
        fit_trunc = fit.compress((LOW <= x) & (x < HIGH))

        chisq, pvalue = stats.chisquare(n_trunc, fit_trunc, ddof=5)
        chisq /= (len(n_trunc) - 1 - 5)
        print "Chi-square statistic:", chisq, pvalue

        plt.figure()

        plt.plot(x * VNS, n)
        self.plot_landau_and_gamma(x, p_gamma, p_landau)
        #plt.plot(x_trunc * VNS, fit_trunc, linewidth=4)

        plt.axvline(LOW * VNS)
        plt.axvline(HIGH * VNS)

        plt.xlabel("Pulse integral [V ns]")
        plt.ylabel("Count")
        plt.yscale('log')
        plt.xlim(0, 20)
        plt.ylim(1e2, 1e5)
        plt.title(r"$\chi^2_{red}$: %.2f, p-value: %.2e" % (chisq, pvalue))
        utils.saveplot()

        plt.figure()
        plt.plot(x_trunc * VNS, n_trunc - fit_trunc)
        plt.axhline(0)
        plt.xlabel("Pulse integral [V ns]")
        plt.ylabel("Data - Fit")
        plt.title(r"$\chi^2_{red}$: %.2f, p-value: %.2e" % (chisq, pvalue))
        utils.saveplot(suffix='residuals')
def plot_fsot_vs_lint_for_zenith(fsot, lint):
    bins = linspace(0, 35, 21)

    min_N = 1

    x, f_y, f_y2, l_y, l_y2 = [], [], [], [], []
    for low, high in zip(bins[:-1], bins[1:]):
        rad_low = deg2rad(low)
        rad_high = deg2rad(high)

        query = '(min_n134 >= min_N) & (rad_low <= reference_theta) & (reference_theta < rad_high)'
        f_sel = fsot.readWhere(query)
        l_sel = lint.readWhere(query)

        errors = f_sel['reconstructed_phi'] - f_sel['reference_phi']
        errors2 = f_sel['reconstructed_theta'] - f_sel['reference_theta']
        #f_y.append(std(errors))
        #f_y2.append(std(errors2))
        f_y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2)
        f_y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2)

        errors = l_sel['reconstructed_phi'] - l_sel['reference_phi']
        errors2 = l_sel['reconstructed_theta'] - l_sel['reference_theta']
        #l_y.append(std(errors))
        #l_y2.append(std(errors2))
        l_y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2)
        l_y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2)

        x.append((low + high) / 2)

        print x[-1], len(f_sel), len(l_sel)

    clf()
    plot(x, rad2deg(f_y), label="FSOT phi")
    plot(x, rad2deg(f_y2), label="FSOT theta")
    plot(x, rad2deg(l_y), label="LINT phi")
    plot(x, rad2deg(l_y2), label="LINT theta")
    legend()
    xlabel("Shower zenith angle [deg]")
    ylabel("Angle reconstruction uncertainty [deg]")
    title(r"$N_{MIP} \geq %d$" % min_N)
    utils.saveplot()

    graph = GraphArtist()
    graph.plot(x, rad2deg(f_y), mark=None)
    graph.plot(x, rad2deg(l_y), mark=None, linestyle='dashed')
    graph.plot(x, rad2deg(f_y2), mark=None)
    graph.plot(x, rad2deg(l_y2), mark=None, linestyle='dashed')
    graph.set_xlabel(r"Shower zenith angle [\si{\degree}]")
    graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]")
    artist.utils.save_graph(graph, dirname='plots')
def hist_theta_single_stations(data):
    reconstructions = data.root.reconstructions.reconstructions

    figure()
    for n, station in enumerate(range(501, 507), 1):
        subplot(2, 3, n)
        query = '(N == 1) & s%d' % station
        theta = reconstructions.read_where(query, field='reconstructed_theta')
        hist(rad2deg(theta), bins=linspace(0, 45, 21), histtype='step')
        xlabel(r"$\theta$")
        legend([station])
        locator_params(tight=True, nbins=4)

    utils.saveplot()
예제 #19
0
def plot_shower_size_hist(table):
    figure()

    reconstructed = table.col('reconstructed_shower_size')

    hist(log10(reconstructed), bins=200, histtype='step')
    reference_shower_size = table[0]['reference_shower_size']
    if reference_shower_size == 0.:
        reference_shower_size = 10 ** 4.8
    axvline(log10(reference_shower_size))

    xlabel("log shower size")
    ylabel("count")
    utils.saveplot()
def boxplot_arrival_times(group, N):
    table = group.E_1PeV.zenith_0

    sel = table.readWhere('min_n134 >= N')
    t1 = sel[:]['t1']
    t3 = sel[:]['t3']
    t4 = sel[:]['t4']
    ts = concatenate([t1, t3, t4])
    print "Median arrival time delay over all detected events", median(ts)

    figure()

    bin_edges = linspace(0, 100, 11)
    x, arrival_times = [], []
    t25, t50, t75 = [], [], []
    for low, high in zip(bin_edges[:-1], bin_edges[1:]):
        query = '(min_n134 >= N) & (low <= r) & (r < high)'
        sel = table.readWhere(query)
        t1 = sel[:]['t1']
        t2 = sel[:]['t2']
        ct1 = t1.compress((t1 > -999) & (t2 > -999))
        ct2 = t2.compress((t1 > -999) & (t2 > -999))
        ts = abs(ct2 - ct1)

        t25.append(scoreatpercentile(ts, 25))
        t50.append(scoreatpercentile(ts, 50))
        t75.append(scoreatpercentile(ts, 75))
        x.append((low + high) / 2)

    fill_between(x, t25, t75, color='0.75')
    plot(x, t50, 'o-', color='black')

    xlabel("Core distance [m]")
    ylabel("Arrival time delay [ns]")
    #title(r"$N_{MIP} \geq %d, \quad \theta = 0^\circ$" % N)

    xticks(arange(0, 100.5, 10))

    utils.savedata((x, t25, t50, t75), N)
    utils.saveplot(N)

    graph = GraphArtist()
    graph.shade_region(x, t25, t75)
    graph.plot(x, t50, linestyle=None)
    graph.set_xlabel(r"Core distance [\si{\meter}]")
    graph.set_ylabel(
        r"Arrival time difference $|t_2 - t_1|$ [\si{\nano\second}]")
    graph.set_xlimits(0, 100)
    graph.set_ylimits(min=0)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
예제 #21
0
def hist_theta_single_stations(data):
    reconstructions = data.root.reconstructions.reconstructions

    figure()
    for n, station in enumerate(range(501, 507), 1):
        subplot(2, 3, n)
        query = '(N == 1) & s%d' % station
        theta = reconstructions.readWhere(query, field='reconstructed_theta')
        hist(rad2deg(theta), bins=linspace(0, 45, 21), histtype='step')
        xlabel(r"$\theta$")
        legend([station])
        locator_params(tight=True, nbins=4)

    utils.saveplot()
예제 #22
0
def plot_shower_size_hist(table):
    figure()

    reconstructed = table.col('reconstructed_shower_size')

    hist(log10(reconstructed), bins=200, histtype='step')
    reference_shower_size = table[0]['reference_shower_size']
    if reference_shower_size == 0.:
        reference_shower_size = 10**4.8
    axvline(log10(reference_shower_size))

    xlabel("log shower size")
    ylabel("count")
    utils.saveplot()
예제 #23
0
def plot_nearest_neighbors(data, limit=None):
    global coincidences
    hisparc_group = data.root.hisparc.cluster_kascade.station_601
    kascade_group = data.root.kascade

    coincidences = KascadeCoincidences(data,
                                       hisparc_group,
                                       kascade_group,
                                       ignore_existing=True)

    #dt_opt = find_optimum_dt(coincidences, p0=-13, limit=1000)
    #print(dt_opt)

    graph = GraphArtist(axis='semilogy')
    styles = iter(['solid', 'dashed', 'dashdotted'])

    uncorrelated = None
    figure()
    #for shift in -12, -13, dt_opt, -14:
    for shift in -12, -13, -14:
        print("Shifting", shift)
        coincidences.search_coincidences(shift, dtlimit=1, limit=limit)
        print(".")
        dts = coincidences.coincidences['dt']
        n, bins, p = hist(abs(dts) / 1e9,
                          bins=linspace(0, 1, 101),
                          histtype='step',
                          label='%.3f s' % shift)
        n = [u if u else 1e-99 for u in n]
        graph.histogram(n, bins, linestyle=styles.next() + ',gray')
        if uncorrelated is None:
            uncorrelated = n, bins

    y, bins = uncorrelated
    x = (bins[:-1] + bins[1:]) / 2
    f = lambda x, N, a: N * exp(-a * x)
    popt, pcov = curve_fit(f, x, y)
    plot(x, f(x, *popt), label=r"$\lambda = %.2f$ Hz" % popt[1])
    graph.plot(x, f(x, *popt), mark=None)

    yscale('log')
    xlabel("Time difference [s]")
    graph.set_xlabel(r"Time difference [\si{\second}]")
    ylabel("Counts")
    graph.set_ylabel("Counts")
    legend()
    graph.set_ylimits(min=10)
    utils.saveplot()
    graph.save('plots/MAT-nearest-neighbors')
def boxplot_arrival_times(group, N):
    table = group.E_1PeV.zenith_0

    sel = table.read_where('min_n134 >= N')
    t1 = sel[:]['t1']
    t3 = sel[:]['t3']
    t4 = sel[:]['t4']
    ts = concatenate([t1, t3, t4])
    print "Median arrival time delay over all detected events", median(ts)

    figure()

    bin_edges = linspace(0, 100, 11)
    x, arrival_times = [], []
    t25, t50, t75 = [], [], []
    for low, high in zip(bin_edges[:-1], bin_edges[1:]):
        query = '(min_n134 >= N) & (low <= r) & (r < high)'
        sel = table.read_where(query)
        t1 = sel[:]['t1']
        t2 = sel[:]['t2']
        ct1 = t1.compress((t1 > -999) & (t2 > -999))
        ct2 = t2.compress((t1 > -999) & (t2 > -999))
        ts = abs(ct2 - ct1)

        t25.append(scoreatpercentile(ts, 25))
        t50.append(scoreatpercentile(ts, 50))
        t75.append(scoreatpercentile(ts, 75))
        x.append((low + high) / 2)

    fill_between(x, t25, t75, color='0.75')
    plot(x, t50, 'o-', color='black')

    xlabel("Core distance [m]")
    ylabel("Arrival time delay [ns]")
    #title(r"$N_{MIP} \geq %d, \quad \theta = 0^\circ$" % N)

    xticks(arange(0, 100.5, 10))

    utils.savedata((x, t25, t50, t75), N)
    utils.saveplot(N)

    graph = GraphArtist()
    graph.shade_region(x, t25, t75)
    graph.plot(x, t50, linestyle=None)
    graph.set_xlabel(r"Core distance [\si{\meter}]")
    graph.set_ylabel(r"Arrival time difference $|t_2 - t_1|$ [\si{\nano\second}]")
    graph.set_xlimits(0, 100)
    graph.set_ylimits(min=0)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
예제 #25
0
def scatterplot_core_distance_vs_time():
    plt.figure()

    sim = data.root.showers.E_1PeV.zenith_0
    electrons = sim.electrons

    plt.loglog(electrons[:]['core_distance'], electrons[:]['arrival_time'], ',')
    plt.xlim(1e0, 1e2)
    plt.ylim(1e-3, 1e3)

    plt.xlabel("Core distance [m]")
    plt.ylabel("Arrival time [ns]")

    utils.title("Shower front timing structure")
    utils.saveplot()
예제 #26
0
def scatterplot_core_distance_vs_time():
    plt.figure()

    sim = data.root.showers.E_1PeV.zenith_0
    electrons = sim.electrons

    plt.loglog(electrons[:]['core_distance'], electrons[:]['arrival_time'], ',')
    plt.xlim(1e0, 1e2)
    plt.ylim(1e-3, 1e3)

    plt.xlabel("Core distance [m]")
    plt.ylabel("Arrival time [ns]")

    utils.title("Shower front timing structure")
    utils.saveplot()
예제 #27
0
def plot_coordinate_density():
    figure()
    suptitle('densities')

    x, y, alpha = generate_random_coordinates_in_circle(10, 100000)
    xp, yp, alphap = transform_coordinates(x, y, alpha)

    subplot('121', aspect='equal')
    draw_coordinate_density(x, y)
    title('shower-centered coordinates')

    subplot('122', aspect='equal')
    draw_coordinate_density(xp, yp)
    title('cluster-centered coordinates')

    utils.saveplot()
def plot_coordinate_density():
    figure()
    suptitle("densities")

    x, y, alpha = generate_random_coordinates_in_circle(10, 100000)
    xp, yp, alphap = transform_coordinates(x, y, alpha)

    subplot("121", aspect="equal")
    draw_coordinate_density(x, y)
    title("shower-centered coordinates")

    subplot("122", aspect="equal")
    draw_coordinate_density(xp, yp)
    title("cluster-centered coordinates")

    utils.saveplot()
예제 #29
0
def boxplot_phi_reconstruction_results_for_MIP(table, N):
    figure()

    THETA = deg2rad(22.5)
    DTHETA = deg2rad(5.)

    bin_edges = linspace(-180, 180, 18)
    x, r_dphi = [], []
    d25, d50, d75 = [], [], []
    for low, high in zip(bin_edges[:-1], bin_edges[1:]):
        rad_low = deg2rad(low)
        rad_high = deg2rad(high)
        query = '(min_n134 >= N) & (rad_low < reference_phi) & (reference_phi < rad_high) & (abs(reference_theta - THETA) <= DTHETA)'
        sel = table.readWhere(query)
        dphi = sel[:]['reconstructed_phi'] - sel[:]['reference_phi']
        dphi = (dphi + pi) % (2 * pi) - pi
        r_dphi.append(rad2deg(dphi))

        d25.append(scoreatpercentile(rad2deg(dphi), 25))
        d50.append(scoreatpercentile(rad2deg(dphi), 50))
        d75.append(scoreatpercentile(rad2deg(dphi), 75))
        x.append((low + high) / 2)

    #boxplot(r_dphi, positions=x, widths=1 * (high - low), sym='')
    fill_between(x, d25, d75, color='0.75')
    plot(x, d50, 'o-', color='black')

    xlabel(r"$\phi_K$ [deg]")
    ylabel(r"$\phi_H - \phi_K$ [deg]")
    title(r"$N_{MIP} \geq %d, \quad \theta = 22.5^\circ \pm %d^\circ$" %
          (N, rad2deg(DTHETA)))

    xticks(linspace(-180, 180, 9))
    axhline(0, color='black')

    utils.saveplot(N)

    graph = GraphArtist()
    graph.draw_horizontal_line(0, linestyle='gray')
    graph.shade_region(x, d25, d75)
    graph.plot(x, d50, linestyle=None)
    graph.set_xlabel(r"$\phi_K$ [\si{\degree}]")
    graph.set_ylabel(r"$\phi_H - \phi_K$ [\si{\degree}]")
    graph.set_xticks([-180, -90, '...', 180])
    graph.set_xlimits(-180, 180)
    graph.set_ylimits(-23, 23)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
def plot_uncertainty_zenith_angular_distance(group):
    group = group.E_1PeV
    rec = DirectionReconstruction

    N = 2

    # constants for uncertainty estimation
    # BEWARE: stations must be the same over all reconstruction tables used
    station = group.zenith_0.attrs.cluster.stations[0]
    r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3)
    r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4)

    figure()
    graph = GraphArtist()
    # Uncertainty estimate
    x = linspace(0, deg2rad(45), 50)
    #x = array([pi / 8])
    phis = linspace(-pi, pi, 50)
    y, y2 = [], []
    for t in x:
        y.append(mean(rec.rel_phi_errorsq(t, phis, phi1, phi2, r1, r2)))
        y2.append(mean(rec.rel_theta1_errorsq(t, phis, phi1, phi2, r1, r2)))
    y = TIMING_ERROR * sqrt(array(y))
    y2 = TIMING_ERROR * sqrt(array(y2))
    ang_dist = sqrt((y * sin(x))**2 + y2**2)
    #plot(rad2deg(x), rad2deg(y), label="Estimate Phi")
    #plot(rad2deg(x), rad2deg(y2), label="Estimate Theta")
    plot(rad2deg(x), rad2deg(ang_dist), label="Angular distance")
    graph.plot(rad2deg(x), rad2deg(ang_dist), mark=None)
    print rad2deg(x)
    print rad2deg(y)
    print rad2deg(y2)
    print rad2deg(y * sin(x))
    print rad2deg(ang_dist)

    # Labels etc.
    xlabel("Shower zenith angle [deg]")
    ylabel("Angular distance [deg]")
    graph.set_xlabel(r"Shower zenith angle [\si{\degree}]")
    graph.set_ylabel(r"Angular distance [\si{\degree}]")
    graph.set_ylimits(min=6)
    #title(r"$N_{MIP} \geq %d$" % N)
    #ylim(0, 100)
    #legend(numpoints=1)
    utils.saveplot()
    artist.utils.save_graph(graph, dirname='plots')
    print
def plot_detection_efficiency_vs_R_for_angles(N):
    figure()
    graph = GraphArtist()
    locations = iter(['right', 'left', 'below left'])
    positions = iter([.18, .14, .15])

    bin_edges = linspace(0, 100, 20)
    x = (bin_edges[:-1] + bin_edges[1:]) / 2.

    for angle in [0, 22.5, 35]:
        angle_str = str(angle).replace('.', '_')
        shower_group = '/simulations/E_1PeV/zenith_%s' % angle_str

        efficiencies = []
        for low, high in zip(bin_edges[:-1], bin_edges[1:]):
            shower_results = []
            for shower in data.listNodes(shower_group):
                sel_query = '(low <= r) & (r < high)'
                coinc_sel = shower.coincidences.readWhere(sel_query)
                ids = coinc_sel['id']
                obs_sel = shower.observables.readCoordinates(ids)
                assert (obs_sel['id'] == ids).all()

                o = obs_sel
                sel = obs_sel.compress((o['n1'] >= N) & (o['n3'] >= N)
                                       & (o['n4'] >= N))
                shower_results.append(len(sel) / len(obs_sel))
            efficiencies.append(mean(shower_results))

        plot(x, efficiencies, label=r'$\theta = %s^\circ$' % angle)
        graph.plot(x, efficiencies, mark=None)
        graph.add_pin(r'\SI{%s}{\degree}' % angle,
                      location=locations.next(),
                      use_arrow=True,
                      relative_position=positions.next())

    xlabel("Core distance [m]")
    graph.set_xlabel(r"Core distance [\si{\meter}]")
    ylabel("Detection efficiency")
    graph.set_ylabel("Detection efficiency")
    #title(r"$N_{MIP} \geq %d$" % N)
    legend()
    graph.set_xlimits(0, 100)
    graph.set_ylimits(0, 1)

    utils.saveplot(N)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
def plot_uncertainty_zenith_angular_distance(group):
    group = group.E_1PeV
    rec = DirectionReconstruction

    N = 2

    # constants for uncertainty estimation
    # BEWARE: stations must be the same over all reconstruction tables used
    station = group.zenith_0.attrs.cluster.stations[0]
    r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3)
    r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4)

    figure()
    graph = GraphArtist()
    # Uncertainty estimate
    x = linspace(0, deg2rad(45), 50)
    #x = array([pi / 8])
    phis = linspace(-pi, pi, 50)
    y, y2 = [], []
    for t in x:
        y.append(mean(rec.rel_phi_errorsq(t, phis, phi1, phi2, r1, r2)))
        y2.append(mean(rec.rel_theta1_errorsq(t, phis, phi1, phi2, r1, r2)))
    y = TIMING_ERROR * sqrt(array(y))
    y2 = TIMING_ERROR * sqrt(array(y2))
    ang_dist = sqrt((y * sin(x)) ** 2 + y2 ** 2)
    #plot(rad2deg(x), rad2deg(y), label="Estimate Phi")
    #plot(rad2deg(x), rad2deg(y2), label="Estimate Theta")
    plot(rad2deg(x), rad2deg(ang_dist), label="Angular distance")
    graph.plot(rad2deg(x), rad2deg(ang_dist), mark=None)
    print rad2deg(x)
    print rad2deg(y)
    print rad2deg(y2)
    print rad2deg(y * sin(x))
    print rad2deg(ang_dist)

    # Labels etc.
    xlabel("Shower zenith angle [deg]")
    ylabel("Angular distance [deg]")
    graph.set_xlabel(r"Shower zenith angle [\si{\degree}]")
    graph.set_ylabel(r"Angular distance [\si{\degree}]")
    graph.set_ylimits(min=6)
    #title(r"$N_{MIP} \geq %d$" % N)
    #ylim(0, 100)
    #legend(numpoints=1)
    utils.saveplot()
    artist.utils.save_graph(graph, dirname='plots')
    print
def boxplot_phi_reconstruction_results_for_MIP(group, N):
    table = group.E_1PeV.zenith_22_5

    figure()

    bin_edges = linspace(-180, 180, 18)
    x, r_dphi = [], []
    d25, d50, d75 = [], [], []
    for low, high in zip(bin_edges[:-1], bin_edges[1:]):
        rad_low = deg2rad(low)
        rad_high = deg2rad(high)
        query = '(min_n134 >= N) & (rad_low < reference_phi) & (reference_phi < rad_high)'
        sel = table.readWhere(query)
        dphi = sel[:]['reconstructed_phi'] - sel[:]['reference_phi']
        dphi = (dphi + pi) % (2 * pi) - pi
        r_dphi.append(rad2deg(dphi))

        d25.append(scoreatpercentile(rad2deg(dphi), 25))
        d50.append(scoreatpercentile(rad2deg(dphi), 50))
        d75.append(scoreatpercentile(rad2deg(dphi), 75))
        x.append((low + high) / 2)

    fill_between(x, d25, d75, color='0.75')
    plot(x, d50, 'o-', color='black')

    xlabel(r"$\phi_{simulated}$ [deg]")
    ylabel(r"$\phi_{reconstructed} - \phi_{simulated}$ [deg]")
    #title(r"$N_{MIP} \geq %d, \quad \theta = 22.5^\circ$" % N)

    xticks(linspace(-180, 180, 9))
    axhline(0, color='black')
    ylim(-15, 15)

    utils.saveplot(N)

    graph = GraphArtist()
    graph.draw_horizontal_line(0, linestyle='gray')
    graph.shade_region(x, d25, d75)
    graph.plot(x, d50, linestyle=None)
    graph.set_xlabel(r"$\phi_\mathrm{sim}$ [\si{\degree}]")
    graph.set_ylabel(r"$\phi_\mathrm{rec} - \phi_\mathrm{sim}$ [\si{\degree}]")
    graph.set_title(r"$N_\mathrm{MIP} \geq %d$" % N)
    graph.set_xticks([-180, -90, '...', 180])
    graph.set_xlimits(-180, 180)
    graph.set_ylimits(-17, 17)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
def plot_uncertainty_core_distance(group):
    table = group.E_1PeV.zenith_22_5

    N = 2
    DR = 10

    figure()
    x, y, y2 = [], [], []
    for R in range(0, 81, 20):
        x.append(R)
        events = table.readWhere('(min_n134 == N) & (abs(r - R) <= DR)')
        print len(events),
        errors = events['reference_theta'] - events['reconstructed_theta']
        # Make sure -pi < errors < pi
        errors = (errors + pi) % (2 * pi) - pi
        errors2 = events['reference_phi'] - events['reconstructed_phi']
        # Make sure -pi < errors2 < pi
        errors2 = (errors2 + pi) % (2 * pi) - pi
        #y.append(std(errors))
        #y2.append(std(errors2))
        y.append(
            (scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) /
            2)
        y2.append(
            (scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) /
            2)

    print
    print "R: theta_std, phi_std"
    for u, v, w in zip(x, y, y2):
        print u, v, w
    print
    utils.savedata((x, y, y2))

    # Plots
    plot(x, rad2deg(y), '^-', label="Theta")
    plot(x, rad2deg(y2), 'v-', label="Phi")

    # Labels etc.
    xlabel("Core distance [m] $\pm %d$" % DR)
    ylabel("Angle reconstruction uncertainty [deg]")
    #title(r"$N_{MIP} = %d, \theta = 22.5^\circ$" % N)
    ylim(ymin=0)
    legend(numpoints=1, loc='best')
    utils.saveplot()
    print
def boxplot_phi_reconstruction_results_for_MIP(table, N):
    figure()

    THETA = deg2rad(22.5)
    DTHETA = deg2rad(5.)

    bin_edges = linspace(-180, 180, 18)
    x, r_dphi = [], []
    d25, d50, d75 = [], [], []
    for low, high in zip(bin_edges[:-1], bin_edges[1:]):
        rad_low = deg2rad(low)
        rad_high = deg2rad(high)
        query = '(min_n134 >= N) & (rad_low < reference_phi) & (reference_phi < rad_high) & (abs(reference_theta - THETA) <= DTHETA)'
        sel = table.readWhere(query)
        dphi = sel[:]['reconstructed_phi'] - sel[:]['reference_phi']
        dphi = (dphi + pi) % (2 * pi) - pi
        r_dphi.append(rad2deg(dphi))

        d25.append(scoreatpercentile(rad2deg(dphi), 25))
        d50.append(scoreatpercentile(rad2deg(dphi), 50))
        d75.append(scoreatpercentile(rad2deg(dphi), 75))
        x.append((low + high) / 2)

    #boxplot(r_dphi, positions=x, widths=1 * (high - low), sym='')
    fill_between(x, d25, d75, color='0.75')
    plot(x, d50, 'o-', color='black')

    xlabel(r"$\phi_K$ [deg]")
    ylabel(r"$\phi_H - \phi_K$ [deg]")
    title(r"$N_{MIP} \geq %d, \quad \theta = 22.5^\circ \pm %d^\circ$" % (N, rad2deg(DTHETA)))

    xticks(linspace(-180, 180, 9))
    axhline(0, color='black')

    utils.saveplot(N)

    graph = GraphArtist()
    graph.draw_horizontal_line(0, linestyle='gray')
    graph.shade_region(x, d25, d75)
    graph.plot(x, d50, linestyle=None)
    graph.set_xlabel(r"$\phi_K$ [\si{\degree}]")
    graph.set_ylabel(r"$\phi_H - \phi_K$ [\si{\degree}]")
    graph.set_xticks([-180, -90, '...', 180])
    graph.set_xlimits(-180, 180)
    graph.set_ylimits(-23, 23)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
예제 #36
0
    def plot_detection_efficiency(self):
        integrals, dens = self.get_integrals_and_densities()

        popt = self.full_fit_on_data(integrals,
                                     (1., 1., 5e3 / .32, 3.38 / 5000, 1.))

        x, y, yerr = [], [], []
        dens_bins = np.linspace(0, 10, 51)
        for low, high in zip(dens_bins[:-1], dens_bins[1:]):
            sel = integrals.compress((low <= dens) & (dens < high))
            x.append((low + high) / 2)
            frac = self.determine_charged_fraction(sel, popt)
            y.append(frac)
            yerr.append(np.sqrt(frac * len(sel)) / len(sel))
            print(low + high) / 2, len(sel)
            self.plot_full_spectrum_fit_in_density_range(sel, popt, low, high)
        print

        plt.figure()
        plt.errorbar(x, y, yerr, fmt='o', label='data', markersize=3.)

        popt, pcov = optimize.curve_fit(self.conv_p_detection, x, y, p0=(1., ))
        print "Sigma Gauss:", popt

        x2 = plt.linspace(0, 10, 101)
        plt.plot(x2, self.p_detection(x2), label='poisson')
        plt.plot(x2, self.conv_p_detection(x2, *popt), label='poisson/gauss')

        plt.xlabel("Charged particle density [$m^{-2}$]")
        plt.ylabel("Detection probability")
        plt.ylim(0, 1.)
        plt.legend(loc='best')
        utils.saveplot()

        graph = GraphArtist()
        graph.plot(x2, self.p_detection(x2), mark=None)
        graph.plot(x2,
                   self.conv_p_detection(x2, *popt),
                   mark=None,
                   linestyle='dashed')
        graph.plot(x, y, yerr=yerr, linestyle=None)
        graph.set_xlabel(r"Charged particle density [\si{\per\square\meter}]")
        graph.set_ylabel("Detection probability")
        graph.set_xlimits(min=0)
        graph.set_ylimits(min=0)
        artist.utils.save_graph(graph, dirname='plots')
예제 #37
0
def plot_residual_time_differences(data):
    global idxes, dts
    events = data.root.kascade.events
    c_index = data.root.kascade.c_index

    t0 = make_timestamp(2008, 7, 2)
    t1 = make_timestamp(2008, 7, 3)

    idxes = events.get_where_list('(t0 <= timestamp) & (timestamp < t1)')
    t0_idx = min(idxes)
    t1_idx = max(idxes)

    dts = c_index.read_where('(t0_idx <= k_idx) & (k_idx < t1_idx)',
                            field='dt')
    all_dts = c_index.col('dt')

    figure()
    subplot(121)
    hist(all_dts / 1e3, bins=arange(-10, 2, .01), histtype='step')
    title("July 1 - Aug 6, 2008")
    xlabel("Time difference [us]")
    ylabel("Counts")

    subplot(122)
    hist(dts / 1e3, bins=arange(-8, -6, .01), histtype='step')
    title("July 2, 2008")
    xlabel("Time difference [us]")
    utils.saveplot()

    graph = MultiPlot(1, 2, width=r'.45\linewidth')
    n, bins = histogram(all_dts / 1e3, bins=arange(-10, 2, .01))
    graph.histogram(0, 1, n, bins)
    graph.set_title(0, 1, "Jul 1 - Aug 6, 2008")

    n, bins = histogram(dts / 1e3, bins=arange(-8, -6, .01))
    graph.histogram(0, 0, n, bins)
    graph.set_title(0, 0, "Jul 2, 2008")

    graph.set_xlabel(r"Time difference [\si{\micro\second}]")
    graph.set_ylabel("Counts")
    graph.set_ylimits(min=0)
    graph.show_xticklabels_for_all([(0, 0), (0, 1)])
    graph.show_yticklabels_for_all([(0, 0), (0, 1)])

    graph.save('plots/MAT-residual-time-differences')
    graph.save_as_pdf('preview')
def boxplot_phi_reconstruction_results_for_MIP(group, N):
    table = group.E_1PeV.zenith_22_5

    figure()

    bin_edges = linspace(-180, 180, 18)
    x, r_dphi = [], []
    d25, d50, d75 = [], [], []
    for low, high in zip(bin_edges[:-1], bin_edges[1:]):
        rad_low = deg2rad(low)
        rad_high = deg2rad(high)
        query = '(min_n134 >= N) & (rad_low < reference_phi) & (reference_phi < rad_high)'
        sel = table.read_where(query)
        dphi = sel[:]['reconstructed_phi'] - sel[:]['reference_phi']
        dphi = (dphi + pi) % (2 * pi) - pi
        r_dphi.append(rad2deg(dphi))

        d25.append(scoreatpercentile(rad2deg(dphi), 25))
        d50.append(scoreatpercentile(rad2deg(dphi), 50))
        d75.append(scoreatpercentile(rad2deg(dphi), 75))
        x.append((low + high) / 2)

    fill_between(x, d25, d75, color='0.75')
    plot(x, d50, 'o-', color='black')

    xlabel(r"$\phi_{simulated}$ [deg]")
    ylabel(r"$\phi_{reconstructed} - \phi_{simulated}$ [deg]")
    #title(r"$N_{MIP} \geq %d, \quad \theta = 22.5^\circ$" % N)

    xticks(linspace(-180, 180, 9))
    axhline(0, color='black')
    ylim(-15, 15)

    utils.saveplot(N)

    graph = GraphArtist()
    graph.draw_horizontal_line(0, linestyle='gray')
    graph.shade_region(x, d25, d75)
    graph.plot(x, d50, linestyle=None)
    graph.set_xlabel(r"$\phi_\mathrm{sim}$ [\si{\degree}]")
    graph.set_ylabel(r"$\phi_\mathrm{rec} - \phi_\mathrm{sim}$ [\si{\degree}]")
    graph.set_title(r"$N_\mathrm{MIP} \geq %d$" % N)
    graph.set_xticks([-180, -90, '...', 180])
    graph.set_xlimits(-180, 180)
    graph.set_ylimits(-17, 17)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
def plot_detection_efficiency_vs_R_for_angles(N):
    figure()
    graph = GraphArtist()
    locations = iter(['right', 'left', 'below left'])
    positions = iter([.18, .14, .15])

    bin_edges = linspace(0, 100, 20)
    x = (bin_edges[:-1] + bin_edges[1:]) / 2.

    for angle in [0, 22.5, 35]:
        angle_str = str(angle).replace('.', '_')
        shower_group = '/simulations/E_1PeV/zenith_%s' % angle_str

        efficiencies = []
        for low, high in zip(bin_edges[:-1], bin_edges[1:]):
            shower_results = []
            for shower in data.list_nodes(shower_group):
                sel_query = '(low <= r) & (r < high)'
                coinc_sel = shower.coincidences.read_where(sel_query)
                ids = coinc_sel['id']
                obs_sel = shower.observables.read_coordinates(ids)
                assert (obs_sel['id'] == ids).all()

                o = obs_sel
                sel = obs_sel.compress((o['n1'] >= N) & (o['n3'] >= N) &
                                       (o['n4'] >= N))
                shower_results.append(len(sel) / len(obs_sel))
            efficiencies.append(mean(shower_results))

        plot(x, efficiencies, label=r'$\theta = %s^\circ$' % angle)
        graph.plot(x, efficiencies, mark=None)
        graph.add_pin(r'\SI{%s}{\degree}' % angle,
                      location=locations.next(), use_arrow=True,
                      relative_position=positions.next())

    xlabel("Core distance [m]")
    graph.set_xlabel(r"Core distance [\si{\meter}]")
    ylabel("Detection efficiency")
    graph.set_ylabel("Detection efficiency")
    #title(r"$N_{MIP} \geq %d$" % N)
    legend()
    graph.set_xlimits(0, 100)
    graph.set_ylimits(0, 1)

    utils.saveplot(N)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
예제 #40
0
def plot_residual_time_differences(data):
    global idxes, dts
    events = data.root.kascade.events
    c_index = data.root.kascade.c_index

    t0 = make_timestamp(2008, 7, 2)
    t1 = make_timestamp(2008, 7, 3)

    idxes = events.get_where_list('(t0 <= timestamp) & (timestamp < t1)')
    t0_idx = min(idxes)
    t1_idx = max(idxes)

    dts = c_index.read_where('(t0_idx <= k_idx) & (k_idx < t1_idx)',
                             field='dt')
    all_dts = c_index.col('dt')

    figure()
    subplot(121)
    hist(all_dts / 1e3, bins=arange(-10, 2, .01), histtype='step')
    title("July 1 - Aug 6, 2008")
    xlabel("Time difference [us]")
    ylabel("Counts")

    subplot(122)
    hist(dts / 1e3, bins=arange(-8, -6, .01), histtype='step')
    title("July 2, 2008")
    xlabel("Time difference [us]")
    utils.saveplot()

    graph = MultiPlot(1, 2, width=r'.45\linewidth')
    n, bins = histogram(all_dts / 1e3, bins=arange(-10, 2, .01))
    graph.histogram(0, 1, n, bins)
    graph.set_title(0, 1, "Jul 1 - Aug 6, 2008")

    n, bins = histogram(dts / 1e3, bins=arange(-8, -6, .01))
    graph.histogram(0, 0, n, bins)
    graph.set_title(0, 0, "Jul 2, 2008")

    graph.set_xlabel(r"Time difference [\si{\micro\second}]")
    graph.set_ylabel("Counts")
    graph.set_ylimits(min=0)
    graph.show_xticklabels_for_all([(0, 0), (0, 1)])
    graph.show_yticklabels_for_all([(0, 0), (0, 1)])

    graph.save('plots/MAT-residual-time-differences')
    graph.save_as_pdf('preview')
    def plot_detection_efficiency(self):
        integrals, dens = self.get_integrals_and_densities()

        popt = self.full_fit_on_data(integrals,
                                      (1., 1., 5e3 / .32, 3.38 / 5000, 1.))

        x, y, yerr = [], [], []
        dens_bins = np.linspace(0, 10, 51)
        for low, high in zip(dens_bins[:-1], dens_bins[1:]):
            sel = integrals.compress((low <= dens) & (dens < high))
            x.append((low + high) / 2)
            frac = self.determine_charged_fraction(sel, popt)
            y.append(frac)
            yerr.append(np.sqrt(frac * len(sel)) / len(sel))
            print (low + high) / 2, len(sel)
            self.plot_full_spectrum_fit_in_density_range(sel, popt, low, high)
        print

        plt.figure()
        plt.errorbar(x, y, yerr, fmt='o', label='data', markersize=3.)

        popt, pcov = optimize.curve_fit(self.conv_p_detection, x, y, p0=(1.,))
        print "Sigma Gauss:", popt

        x2 = plt.linspace(0, 10, 101)
        plt.plot(x2, self.p_detection(x2), label='poisson')
        plt.plot(x2, self.conv_p_detection(x2, *popt), label='poisson/gauss')

        plt.xlabel("Charged particle density [$m^{-2}$]")
        plt.ylabel("Detection probability")
        plt.ylim(0, 1.)
        plt.legend(loc='best')
        utils.saveplot()

        graph = GraphArtist()
        graph.plot(x2, self.p_detection(x2), mark=None)
        graph.plot(x2, self.conv_p_detection(x2, *popt), mark=None,
                   linestyle='dashed')
        graph.plot(x, y, yerr=yerr, linestyle=None)
        graph.set_xlabel(
            r"Charged particle density [\si{\per\square\meter}]")
        graph.set_ylabel("Detection probability")
        graph.set_xlimits(min=0)
        graph.set_ylimits(min=0)
        artist.utils.save_graph(graph, dirname='plots')
예제 #42
0
def plot_nearest_neighbors(data, limit=None):
    global coincidences
    hisparc_group = data.root.hisparc.cluster_kascade.station_601
    kascade_group = data.root.kascade

    coincidences = KascadeCoincidences(data, hisparc_group, kascade_group,
                                       ignore_existing=True)

    #dt_opt = find_optimum_dt(coincidences, p0=-13, limit=1000)
    #print dt_opt

    graph = GraphArtist(axis='semilogy')
    styles = iter(['solid', 'dashed', 'dashdotted'])

    uncorrelated = None
    figure()
    #for shift in -12, -13, dt_opt, -14:
    for shift in -12, -13, -14:
        print "Shifting", shift
        coincidences.search_coincidences(shift, dtlimit=1, limit=limit)
        print "."
        dts = coincidences.coincidences['dt']
        n, bins, p = hist(abs(dts) / 1e9, bins=linspace(0, 1, 101),
                          histtype='step', label='%.3f s' % shift)
        n = [u if u else 1e-99 for u in n]
        graph.histogram(n, bins, linestyle=styles.next() + ',gray')
        if uncorrelated is None:
            uncorrelated = n, bins

    y, bins = uncorrelated
    x = (bins[:-1] + bins[1:]) / 2
    f = lambda x, N, a: N * exp(-a * x)
    popt, pcov = curve_fit(f, x, y)
    plot(x, f(x, *popt), label=r"$\lambda = %.2f$ Hz" % popt[1])
    graph.plot(x, f(x, *popt), mark=None)

    yscale('log')
    xlabel("Time difference [s]")
    graph.set_xlabel(r"Time difference [\si{\second}]")
    ylabel("Counts")
    graph.set_ylabel("Counts")
    legend()
    graph.set_ylimits(min=10)
    utils.saveplot()
    graph.save('plots/MAT-nearest-neighbors')
예제 #43
0
def plot_N_reconstructions_vs_R(table):
    figure()

    station = table.attrs.cluster.stations[0]

    x, y, alpha = station.get_xyalpha_coordinates()

    sim_path = table._v_pathname.replace('reconstructions', 'ldfsim')
    try:
        sim = data.get_node(sim_path)
    except tables.NoSuchNodeError:
        return

    # core distance for simulated events
    x2 = sim.coincidences.col('x')
    y2 = sim.coincidences.col('y')
    r = sqrt((x - x2)**2 + (y - y2)**2)

    # core distance for reconstructed events
    x2, y2 = table.col('reference_core_pos').T
    r2 = sqrt((x - x2)**2 + (y - y2)**2)

    bins = linspace(0, 50, 41)
    x, y = [], []
    for low, high in zip(bins[:-1], bins[1:]):
        sel = r.compress((low <= r) & (r < high))
        sel2 = r2.compress((low <= r2) & (r2 < high))

        if len(sel) > 0:
            x.append((low + high) / 2)
            y.append(len(sel2) / len(sel))
    x = array(x)
    y = array(y)

    plot(x, y, label="sim")

    kldf = ldf.KascadeLdf()
    dens = kldf.calculate_ldf_value(x)

    plot(x, Ptrig(dens), label="calc")
    legend()
    xlabel("Core distance [m]")
    ylabel("Reconstruction efficiency")
    utils.saveplot()
예제 #44
0
def plot_N_reconstructions_vs_R(table):
    figure()

    station = table.attrs.cluster.stations[0]

    x, y, alpha = station.get_xyalpha_coordinates()

    sim_path = table._v_pathname.replace('reconstructions', 'ldfsim')
    try:
        sim = data.getNode(sim_path)
    except tables.NoSuchNodeError:
        return

    # core distance for simulated events
    x2 = sim.coincidences.col('x')
    y2 = sim.coincidences.col('y')
    r = sqrt((x - x2) ** 2 + (y - y2) ** 2)

    # core distance for reconstructed events
    x2, y2 = table.col('reference_core_pos').T
    r2 = sqrt((x - x2) ** 2 + (y - y2) ** 2)

    bins = linspace(0, 50, 41)
    x, y = [], []
    for low, high in zip(bins[:-1], bins[1:]):
        sel = r.compress((low <= r) & (r < high))
        sel2 = r2.compress((low <= r2) & (r2 < high))

        if len(sel) > 0:
            x.append((low + high) / 2)
            y.append(len(sel2) / len(sel))
    x = array(x)
    y = array(y)

    plot(x, y, label="sim")

    kldf = ldf.KascadeLdf()
    dens = kldf.calculate_ldf_value(x)

    plot(x, Ptrig(dens), label="calc")
    legend()
    xlabel("Core distance [m]")
    ylabel("Reconstruction efficiency")
    utils.saveplot()
예제 #45
0
def boxplot_theta_reconstruction_results_for_MIP(table, N):
    figure()

    DTHETA = deg2rad(1.)

    angles = [0, 5, 10, 15, 22.5, 35]
    r_dtheta = []
    x = []
    d25, d50, d75 = [], [], []
    for angle in angles:
        theta = deg2rad(angle)
        sel = table.readWhere(
            '(min_n134 >= N) & (abs(reference_theta - theta) <= DTHETA)')
        dtheta = rad2deg(sel[:]['reconstructed_theta'] -
                         sel[:]['reference_theta'])
        r_dtheta.append(dtheta)

        d25.append(scoreatpercentile(dtheta, 25))
        d50.append(scoreatpercentile(dtheta, 50))
        d75.append(scoreatpercentile(dtheta, 75))
        x.append(angle)

    #boxplot(r_dtheta, sym='', positions=angles, widths=2.)
    fill_between(x, d25, d75, color='0.75')
    plot(x, d50, 'o-', color='black')

    xlabel(r"$\theta_K$ [deg]")
    ylabel(r"$\theta_H - \theta_K$ [deg]")
    title(r"$N_{MIP} \geq %d$" % N)

    axhline(0, color='black')
    ylim(-20, 25)
    xlim(0, 35)

    utils.saveplot(N)

    graph = GraphArtist()
    graph.draw_horizontal_line(0, linestyle='gray')
    graph.shade_region(angles, d25, d75)
    graph.plot(angles, d50, linestyle=None)
    graph.set_xlabel(r"$\theta_K$ [\si{\degree}]")
    graph.set_ylabel(r"$\theta_H - \theta_K$ [\si{\degree}]")
    graph.set_ylimits(-5, 15)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
def plot_reconstruction_efficiency_vs_R_for_angles(N):
    group = data.root.reconstructions.E_1PeV

    figure()

    bin_edges = linspace(0, 100, 10)
    x = (bin_edges[:-1] + bin_edges[1:]) / 2.

    all_data = []

    for angle in [0, 22.5, 35]:
        angle_str = str(angle).replace('.', '_')
        shower_group = '/simulations/E_1PeV/zenith_%s' % angle_str
        reconstructions = group._f_getChild('zenith_%s' % angle_str)

        efficiencies = []
        for low, high in zip(bin_edges[:-1], bin_edges[1:]):
            shower_results = []
            for shower in data.listNodes(shower_group):
                sel_query = '(low <= r) & (r < high)'
                coinc_sel = shower.coincidences.readWhere(sel_query)
                ids = coinc_sel['id']
                obs_sel = shower.observables.readCoordinates(ids)
                assert (obs_sel['id'] == ids).all()

                o = obs_sel
                sel = obs_sel.compress((o['n1'] >= N) & (o['n3'] >= N)
                                       & (o['n4'] >= N))
                shower_results.append(len(sel))
            ssel = reconstructions.readWhere(
                '(min_n134 >= N) & (low <= r) & (r < high)')
            efficiencies.append(len(ssel) / sum(shower_results))

        all_data.append(efficiencies)
        plot(x, efficiencies, label=r'$\theta = %s^\circ$' % angle)

    xlabel("Core distance [m]")
    ylabel("Reconstruction efficiency")
    #title(r"$N_{MIP} \geq %d$" % N)
    legend()

    utils.saveplot(N)
    utils.savedata(array([x] + all_data).T, suffix=N)
def plot_reconstruction_efficiency_vs_R_for_angles(N):
    group = data.root.reconstructions.E_1PeV

    figure()

    bin_edges = linspace(0, 100, 10)
    x = (bin_edges[:-1] + bin_edges[1:]) / 2.

    all_data = []

    for angle in [0, 22.5, 35]:
        angle_str = str(angle).replace('.', '_')
        shower_group = '/simulations/E_1PeV/zenith_%s' % angle_str
        reconstructions = group._f_get_child('zenith_%s' % angle_str)

        efficiencies = []
        for low, high in zip(bin_edges[:-1], bin_edges[1:]):
            shower_results = []
            for shower in data.list_nodes(shower_group):
                sel_query = '(low <= r) & (r < high)'
                coinc_sel = shower.coincidences.read_where(sel_query)
                ids = coinc_sel['id']
                obs_sel = shower.observables.read_coordinates(ids)
                assert (obs_sel['id'] == ids).all()

                o = obs_sel
                sel = obs_sel.compress((o['n1'] >= N) & (o['n3'] >= N) &
                                       (o['n4'] >= N))
                shower_results.append(len(sel))
            ssel = reconstructions.read_where('(min_n134 >= N) & (low <= r) & (r < high)')
            efficiencies.append(len(ssel) / sum(shower_results))

        all_data.append(efficiencies)
        plot(x, efficiencies, label=r'$\theta = %s^\circ$' % angle)

    xlabel("Core distance [m]")
    ylabel("Reconstruction efficiency")
    #title(r"$N_{MIP} \geq %d$" % N)
    legend()

    utils.saveplot(N)
    utils.savedata(array([x] + all_data).T, suffix=N)
def plot_uncertainty_core_distance(group):
    table = group.E_1PeV.zenith_22_5

    N = 2
    DR = 10

    figure()
    x, y, y2 = [], [], []
    for R in range(0, 81, 20):
        x.append(R)
        events = table.read_where('(min_n134 == N) & (abs(r - R) <= DR)')
        print len(events),
        errors = events['reference_theta'] - events['reconstructed_theta']
        # Make sure -pi < errors < pi
        errors = (errors + pi) % (2 * pi) - pi
        errors2 = events['reference_phi'] - events['reconstructed_phi']
        # Make sure -pi < errors2 < pi
        errors2 = (errors2 + pi) % (2 * pi) - pi
        #y.append(std(errors))
        #y2.append(std(errors2))
        y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2)
        y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2)

    print
    print "R: theta_std, phi_std"
    for u, v, w in zip(x, y, y2):
        print u, v, w
    print
    utils.savedata((x, y, y2))

    # Plots
    plot(x, rad2deg(y), '^-', label="Theta")
    plot(x, rad2deg(y2), 'v-', label="Phi")

    # Labels etc.
    xlabel("Core distance [m] $\pm %d$" % DR)
    ylabel("Angle reconstruction uncertainty [deg]")
    #title(r"$N_{MIP} = %d, \theta = 22.5^\circ$" % N)
    ylim(ymin=0)
    legend(numpoints=1, loc='best')
    utils.saveplot()
    print
def boxplot_theta_reconstruction_results_for_MIP(table, N):
    figure()

    DTHETA = deg2rad(1.)

    angles = [0, 5, 10, 15, 22.5, 35]
    r_dtheta = []
    x = []
    d25, d50, d75 = [], [], []
    for angle in angles:
        theta = deg2rad(angle)
        sel = table.readWhere('(min_n134 >= N) & (abs(reference_theta - theta) <= DTHETA)')
        dtheta = rad2deg(sel[:]['reconstructed_theta'] - sel[:]['reference_theta'])
        r_dtheta.append(dtheta)

        d25.append(scoreatpercentile(dtheta, 25))
        d50.append(scoreatpercentile(dtheta, 50))
        d75.append(scoreatpercentile(dtheta, 75))
        x.append(angle)

    #boxplot(r_dtheta, sym='', positions=angles, widths=2.)
    fill_between(x, d25, d75, color='0.75')
    plot(x, d50, 'o-', color='black')

    xlabel(r"$\theta_K$ [deg]")
    ylabel(r"$\theta_H - \theta_K$ [deg]")
    title(r"$N_{MIP} \geq %d$" % N)

    axhline(0, color='black')
    ylim(-20, 25)
    xlim(0, 35)

    utils.saveplot(N)

    graph = GraphArtist()
    graph.draw_horizontal_line(0, linestyle='gray')
    graph.shade_region(angles, d25, d75)
    graph.plot(angles, d50, linestyle=None)
    graph.set_xlabel(r"$\theta_K$ [\si{\degree}]")
    graph.set_ylabel(r"$\theta_H - \theta_K$ [\si{\degree}]")
    graph.set_ylimits(-5, 15)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
예제 #50
0
    def plot_gamma_landau_fit(self):
        events = self.data.root.hisparc.cluster_kascade.station_601.events
        ph0 = events.col('integrals')[:, 0]

        bins = np.linspace(0, RANGE_MAX, N_BINS + 1)
        n, bins = np.histogram(ph0, bins=bins)
        x = (bins[:-1] + bins[1:]) / 2

        p_gamma, p_landau = self.full_spectrum_fit(
            x, n, (1., 1.), (5e3 / .32, 3.38 / 5000, 1.))
        print "FULL FIT"
        print p_gamma, p_landau

        n /= 10
        p_gamma, p_landau = self.constrained_full_spectrum_fit(
            x, n, p_gamma, p_landau)
        print "CONSTRAINED FIT"
        print p_gamma, p_landau

        plt.figure()
        print self.calc_charged_fraction(x, n, p_gamma, p_landau)

        plt.plot(x * VNS, n)
        self.plot_landau_and_gamma(x, p_gamma, p_landau)
        #plt.plot(x, n - self.gamma_func(x, *p_gamma))
        plt.xlabel("Pulse integral [V ns]")
        plt.ylabel("Count")
        plt.yscale('log')
        plt.xlim(0, 30)
        plt.ylim(1e1, 1e4)
        plt.legend()
        utils.saveplot()

        graph = GraphArtist('semilogy')
        graph.histogram(n, bins * VNS, linestyle='gray')
        self.artistplot_landau_and_gamma(graph, x, p_gamma, p_landau)
        graph.set_xlabel(r"Pulse integral [\si{\volt\nano\second}]")
        graph.set_ylabel("Count")
        graph.set_xlimits(0, 30)
        graph.set_ylimits(1e1, 1e4)
        artist.utils.save_graph(graph, dirname='plots')
예제 #51
0
    def plot_full_spectrum_fit_in_density_range(self, sel, popt, low, high):
        bins = np.linspace(0, RANGE_MAX, N_BINS + 1)
        n, bins = np.histogram(sel, bins=bins)
        x = (bins[:-1] + bins[1:]) / 2

        p_gamma, p_landau = self.constrained_full_spectrum_fit(
            x, n, popt[:2], popt[2:])

        plt.figure()
        plt.plot(x * VNS, n, label='data')
        self.plot_landau_and_gamma(x, p_gamma, p_landau)

        y_charged = self.calc_charged_spectrum(x, n, p_gamma, p_landau)
        plt.plot(x * VNS, y_charged, label='charged particles')

        plt.yscale('log')
        plt.xlim(0, 50)
        plt.ylim(ymin=1)
        plt.xlabel("Pulse integral [V ns]")
        plt.ylabel("Count")
        plt.legend()
        suffix = '%.1f-%.1f' % (low, high)
        suffix = suffix.replace('.', '_')
        utils.saveplot(suffix)

        n = np.where(n > 0, n, 1e-99)
        y_charged = np.where(y_charged > 0, y_charged, 1e-99)

        graph = GraphArtist('semilogy')
        graph.histogram(n, bins * VNS, linestyle='gray')
        self.artistplot_alt_landau_and_gamma(graph, x, p_gamma, p_landau)
        graph.histogram(y_charged, bins * VNS)
        graph.set_xlabel(r"Pulse integral [\si{\volt\nano\second}]")
        graph.set_ylabel("Count")
        graph.set_title(
            r"$\SI{%.1f}{\per\square\meter} \leq \rho_\mathrm{charged}$ < $\SI{%.1f}{\per\square\meter}$"
            % (low, high))
        graph.set_xlimits(0, 30)
        graph.set_ylimits(1e0, 1e4)
        artist.utils.save_graph(graph, suffix, dirname='plots')
def plot_failed_and_successful_scatter_plots():
    figure(figsize=(20., 11.5))

    subplot(231)
    plot(gdt1, rad2deg(gphis_sim), ',', c='green')
    plot(dt1, rad2deg(phis_sim), ',', c='red')
    xlabel(r"$t_1 - t_3$ [ns]")
    ylabel(r"$\phi_{sim}$")
    xlim(-200, 200)

    subplot(232)
    plot(gdt2, rad2deg(gphis_sim), ',', c='green')
    plot(dt2, rad2deg(phis_sim), ',', c='red')
    xlabel(r"$t_1 - t_4$ [ns]")
    ylabel(r"$\phi_{sim}$")
    xlim(-200, 200)

    subplot(234)
    plot(gdt1, rad2deg(gphis_rec), ',', c='green')
    plot(dt1, rad2deg(phis_rec), ',', c='red')
    xlabel(r"$t_1 - t_3$ [ns]")
    ylabel(r"$\phi_{rec}$")
    xlim(-200, 200)

    subplot(235)
    plot(gdt2, rad2deg(gphis_rec), ',', c='green')
    plot(dt2, rad2deg(phis_rec), ',', c='red')
    xlabel(r"$t_1 - t_4$ [ns]")
    ylabel(r"$\phi_{rec}$")
    xlim(-200, 200)

    subplot(233)
    plot(gdt1, gdt2, ',', c='green')
    plot(dt1, dt2, ',', c='red')
    xlabel(r"$t_1 - t_3$ [ns]")
    ylabel(r"$t_1 - t_4$ [ns]")
    xlim(-200, 200)
    ylim(-200, 200)

    utils.saveplot()
def plot_failed_and_successful_scatter_plots():
    figure(figsize=(20., 11.5))

    subplot(231)
    plot(gdt1, rad2deg(gphis_sim), ',', c='green')
    plot(dt1, rad2deg(phis_sim), ',', c='red')
    xlabel(r"$t_1 - t_3$ [ns]")
    ylabel(r"$\phi_{sim}$")
    xlim(-200, 200)

    subplot(232)
    plot(gdt2, rad2deg(gphis_sim), ',', c='green')
    plot(dt2, rad2deg(phis_sim), ',', c='red')
    xlabel(r"$t_1 - t_4$ [ns]")
    ylabel(r"$\phi_{sim}$")
    xlim(-200, 200)

    subplot(234)
    plot(gdt1, rad2deg(gphis_rec), ',', c='green')
    plot(dt1, rad2deg(phis_rec), ',', c='red')
    xlabel(r"$t_1 - t_3$ [ns]")
    ylabel(r"$\phi_{rec}$")
    xlim(-200, 200)

    subplot(235)
    plot(gdt2, rad2deg(gphis_rec), ',', c='green')
    plot(dt2, rad2deg(phis_rec), ',', c='red')
    xlabel(r"$t_1 - t_4$ [ns]")
    ylabel(r"$\phi_{rec}$")
    xlim(-200, 200)

    subplot(233)
    plot(gdt1, gdt2, ',', c='green')
    plot(dt1, dt2, ',', c='red')
    xlabel(r"$t_1 - t_3$ [ns]")
    ylabel(r"$t_1 - t_4$ [ns]")
    xlim(-200, 200)
    ylim(-200, 200)

    utils.saveplot()
def boxplot_theta_reconstruction_results_for_MIP(group, N):
    group = group.E_1PeV

    figure()

    angles = [0, 5, 10, 15, 22.5, 30, 35, 45]
    r_dtheta = []
    d25, d50, d75 = [], [], []
    for angle in angles:
        table = group._f_getChild('zenith_%s' % str(angle).replace('.', '_'))
        sel = table.readWhere('min_n134 >= %d' % N)
        dtheta = sel[:]['reconstructed_theta'] - sel[:]['reference_theta']
        r_dtheta.append(rad2deg(dtheta))

        d25.append(scoreatpercentile(rad2deg(dtheta), 25))
        d50.append(scoreatpercentile(rad2deg(dtheta), 50))
        d75.append(scoreatpercentile(rad2deg(dtheta), 75))

    fill_between(angles, d25, d75, color='0.75')
    plot(angles, d50, 'o-', color='black')

    xlabel(r"$\theta_{simulated}$ [deg]")
    ylabel(r"$\theta_{reconstructed} - \theta_{simulated}$ [deg]")
    #title(r"$N_{MIP} \geq %d$" % N)

    axhline(0, color='black')
    ylim(-10, 25)

    utils.saveplot(N)

    graph = GraphArtist()
    graph.draw_horizontal_line(0, linestyle='gray')
    graph.shade_region(angles, d25, d75)
    graph.plot(angles, d50, linestyle=None)
    graph.set_xlabel(r"$\theta_\mathrm{sim}$ [\si{\degree}]")
    graph.set_ylabel(
        r"$\theta_\mathrm{rec} - \theta_\mathrm{sim}$ [\si{\degree}]")
    graph.set_title(r"$N_\mathrm{MIP} \geq %d$" % N)
    graph.set_ylimits(-8, 22)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
def plot_reconstruction_efficiency_vs_R_for_mips():
    reconstructions = data.root.reconstructions.E_1PeV.zenith_22_5

    figure()

    bin_edges = linspace(0, 100, 10)
    x = (bin_edges[:-1] + bin_edges[1:]) / 2.

    for N in range(1, 5):
        shower_group = '/simulations/E_1PeV/zenith_22_5'

        efficiencies = []
        for low, high in zip(bin_edges[:-1], bin_edges[1:]):
            shower_results = []
            for shower in data.listNodes(shower_group):
                sel_query = '(low <= r) & (r < high)'
                coinc_sel = shower.coincidences.readWhere(sel_query)
                ids = coinc_sel['id']
                obs_sel = shower.observables.readCoordinates(ids)
                assert (obs_sel['id'] == ids).all()

                o = obs_sel
                sel = o.compress(
                    amin(array([o['n1'], o['n3'], o['n4']]), 0) == N)

                shower_results.append(len(sel))
            ssel = reconstructions.readWhere(
                '(min_n134 == N) & (low <= r) & (r < high)')
            print sum(shower_results), len(
                ssel), len(ssel) / sum(shower_results)
            efficiencies.append(len(ssel) / sum(shower_results))

        plot(x, efficiencies, label=r'$N_{MIP} = %d$' % N)

    xlabel("Core distance [m]")
    ylabel("Reconstruction efficiency")
    #title(r"$\theta = 22.5^\circ$")
    legend()

    utils.saveplot()
    def plot_gamma_landau_fit(self):
        events = self.data.root.hisparc.cluster_kascade.station_601.events
        ph0 = events.col('integrals')[:, 0]

        bins = np.linspace(0, RANGE_MAX, N_BINS + 1)
        n, bins = np.histogram(ph0, bins=bins)
        x = (bins[:-1] + bins[1:]) / 2

        p_gamma, p_landau = self.full_spectrum_fit(x, n, (1., 1.),
                                                   (5e3 / .32, 3.38 / 5000, 1.))
        print "FULL FIT"
        print p_gamma, p_landau

        n /= 10
        p_gamma, p_landau = self.constrained_full_spectrum_fit(x, n, p_gamma, p_landau)
        print "CONSTRAINED FIT"
        print p_gamma, p_landau

        plt.figure()
        print self.calc_charged_fraction(x, n, p_gamma, p_landau)

        plt.plot(x * VNS, n)
        self.plot_landau_and_gamma(x, p_gamma, p_landau)
        #plt.plot(x, n - self.gamma_func(x, *p_gamma))
        plt.xlabel("Pulse integral [V ns]")
        plt.ylabel("Count")
        plt.yscale('log')
        plt.xlim(0, 30)
        plt.ylim(1e1, 1e4)
        plt.legend()
        utils.saveplot()

        graph = GraphArtist('semilogy')
        graph.histogram(n, bins * VNS, linestyle='gray')
        self.artistplot_landau_and_gamma(graph, x, p_gamma, p_landau)
        graph.set_xlabel(r"Pulse integral [\si{\volt\nano\second}]")
        graph.set_ylabel("Count")
        graph.set_xlimits(0, 30)
        graph.set_ylimits(1e1, 1e4)
        artist.utils.save_graph(graph, dirname='plots')
def plot_failed_histograms():
    figure()

    global dt1, dt2, phis

    c = 3e8 * 1e-9
    phi1 = calc_phi(1, 3)
    phi2 = calc_phi(1, 4)

    dt1 = array(dt1)
    dt2 = array(dt2)
    phis = array(phis)

    subplot(121)
    hist(c * dt1 / (10 * cos(phis - phi1)), bins=linspace(-20, 20, 100))
    xlabel(r"$c \, \Delta t_1 / (r_1 \cos(\phi - \phi_1))$")

    subplot(122)
    hist(c * dt2 / (10 * cos(phis - phi2)), bins=linspace(-20, 20, 100))
    xlabel(r"$c \, \Delta t_2 / (r_2 \cos(\phi - \phi_2))$")

    utils.saveplot()
    def plot_full_spectrum_fit_in_density_range(self, sel, popt, low, high):
        bins = np.linspace(0, RANGE_MAX, N_BINS + 1)
        n, bins = np.histogram(sel, bins=bins)
        x = (bins[:-1] + bins[1:]) / 2

        p_gamma, p_landau = self.constrained_full_spectrum_fit(x, n, popt[:2], popt[2:])

        plt.figure()
        plt.plot(x * VNS, n, label="data")
        self.plot_landau_and_gamma(x, p_gamma, p_landau)

        y_charged = self.calc_charged_spectrum(x, n, p_gamma, p_landau)
        plt.plot(x * VNS, y_charged, label="charged particles")

        plt.yscale("log")
        plt.xlim(0, 50)
        plt.ylim(ymin=1)
        plt.xlabel("Pulse integral [V ns]")
        plt.ylabel("Count")
        plt.legend()
        suffix = "%.1f-%.1f" % (low, high)
        suffix = suffix.replace(".", "_")
        utils.saveplot(suffix)

        n = np.where(n > 0, n, 1e-99)
        y_charged = np.where(y_charged > 0, y_charged, 1e-99)

        graph = GraphArtist("semilogy")
        graph.histogram(n, bins * VNS, linestyle="gray")
        self.artistplot_alt_landau_and_gamma(graph, x, p_gamma, p_landau)
        graph.histogram(y_charged, bins * VNS)
        graph.set_xlabel(r"Pulse integral [\si{\volt\nano\second}]")
        graph.set_ylabel("Count")
        graph.set_title(
            r"$\SI{%.1f}{\per\square\meter} \leq \rho_\mathrm{charged}$ < $\SI{%.1f}{\per\square\meter}$" % (low, high)
        )
        graph.set_xlimits(0, 30)
        graph.set_ylimits(1e0, 1e4)
        artist.utils.save_graph(graph, suffix, dirname="plots")
def boxplot_theta_reconstruction_results_for_MIP(group, N):
    group = group.E_1PeV

    figure()

    angles = [0, 5, 10, 15, 22.5, 30, 35, 45]
    r_dtheta = []
    d25, d50, d75 = [], [], []
    for angle in angles:
        table = group._f_get_child('zenith_%s' % str(angle).replace('.', '_'))
        sel = table.read_where('min_n134 >= %d' % N)
        dtheta = sel[:]['reconstructed_theta'] - sel[:]['reference_theta']
        r_dtheta.append(rad2deg(dtheta))

        d25.append(scoreatpercentile(rad2deg(dtheta), 25))
        d50.append(scoreatpercentile(rad2deg(dtheta), 50))
        d75.append(scoreatpercentile(rad2deg(dtheta), 75))

    fill_between(angles, d25, d75, color='0.75')
    plot(angles, d50, 'o-', color='black')

    xlabel(r"$\theta_{simulated}$ [deg]")
    ylabel(r"$\theta_{reconstructed} - \theta_{simulated}$ [deg]")
    #title(r"$N_{MIP} \geq %d$" % N)

    axhline(0, color='black')
    ylim(-10, 25)

    utils.saveplot(N)

    graph = GraphArtist()
    graph.draw_horizontal_line(0, linestyle='gray')
    graph.shade_region(angles, d25, d75)
    graph.plot(angles, d50, linestyle=None)
    graph.set_xlabel(r"$\theta_\mathrm{sim}$ [\si{\degree}]")
    graph.set_ylabel(r"$\theta_\mathrm{rec} - \theta_\mathrm{sim}$ [\si{\degree}]")
    graph.set_title(r"$N_\mathrm{MIP} \geq %d$" % N)
    graph.set_ylimits(-8, 22)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
예제 #60
0
def hists_core_distance_vs_time():
    plt.figure()

    sim = data.root.showers.E_1PeV.zenith_0
    electrons = sim.electrons

    bins = np.logspace(0, 2, 5)
    for low, high in zip(bins[:-1], bins[1:]):
        sel = electrons.read_where('(low < core_distance) & (core_distance <= high)')
        arrival_time = sel[:]['arrival_time']
        plt.hist(arrival_time, bins=np.logspace(-2, 3, 50), histtype='step',
                 label="%.2f <= log10(R) < %.2f" % (np.log10(low),
                                                    np.log10(high)))

    plt.xscale('log')

    plt.xlabel("Arrival Time [ns]")
    plt.ylabel("Count")
    plt.legend(loc='upper left')

    utils.title("Shower front timing structure")
    utils.saveplot()