예제 #1
0
    def call(self, v, k, q, mask):
        batch_size = tf.shape(q)[0]

        q = self.wq(q)  # (batch_size, seq_len, hidden_size)
        k = self.wk(k)  # (batch_size, seq_len, hidden_size)
        v = self.wv(v)  # (batch_size, seq_len, hidden_size)

        q = self.split_heads(
            q, batch_size)  # (batch_size, num_heads, seq_len_q, depth)
        k = self.split_heads(
            k, batch_size)  # (batch_size, num_heads, seq_len_k, depth)
        v = self.split_heads(
            v, batch_size)  # (batch_size, num_heads, seq_len_v, depth)

        # scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth)
        # attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)
        scaled_attention, attention_weights = scaled_dot_product_attention(
            q, k, v, mask)

        scaled_attention = tf.transpose(
            scaled_attention,
            perm=[0, 2, 1, 3])  # (batch_size, seq_len_q, num_heads, depth)

        concat_attention = tf.reshape(
            scaled_attention,
            (batch_size, -1,
             self.hidden_size))  # (batch_size, seq_len_q, hidden_size)

        output = self.dense(
            concat_attention)  # (batch_size, seq_len_q, hidden_size)

        return output, attention_weights
예제 #2
0
    def call(self, q, k, v, mask):
        batch_size = tf.shape(q)[0]

        q = self.WQ(q)  # (batch_size, seq_len_q,depth)
        k = self.WK(k)  # (batch_size, seq_len_k, depth)
        v = self.WV(v)  # (batch_size, seq_len_v, depth)

        q = self.split_heads(q, batch_size)
        k = self.split_heads(k, batch_size)
        v = self.split_heads(v, batch_size)

        scaled_attention_outputs, attention_weights = scaled_dot_product_attention(q, k, v, mask)
        scaled_attention_outputs = tf.transpose(scaled_attention_outputs, perm=[0, 2, 1, 3])

        concat_attention = tf.reshape(scaled_attention_outputs, (batch_size, -1, self.d_model))

        output = self.dense(concat_attention)

        return output, attention_weights
예제 #3
0
파일: layers.py 프로젝트: joalmjoalm/VaDER
    def call(self, v, k, q, mask):
        batch_size = tf.shape(q)[0]

        q = self.wq(q)
        k = self.wk(k)
        v = self.wv(v)

        q = self.split_heads(q, batch_size)
        k = self.split_heads(k, batch_size)
        v = self.split_heads(v, batch_size)

        scaled_attention, attention_weights = scaled_dot_product_attention(
            q, k, v, mask)
        scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
        concat_attention = tf.reshape(scaled_attention,
                                      (batch_size, -1, self.d_model))
        output = self.dense(concat_attention)

        return output, attention_weights
예제 #4
0
    def call(self, v, k, q_in, mask, training, drop_n_heads):
        batch_size = tf.shape(q_in)[0]

        q = self.wq(q_in)  # (batch_size, seq_len, model_dim)
        k = self.wk(k)  # (batch_size, seq_len, model_dim)
        v = self.wv(v)  # (batch_size, seq_len, model_dim)

        q = self.split_heads(q, batch_size)  # (batch_size, num_heads, seq_len_q, depth)
        k = self.split_heads(k, batch_size)  # (batch_size, num_heads, seq_len_k, depth)
        v = self.split_heads(v, batch_size)  # (batch_size, num_heads, seq_len_v, depth)

        scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v, mask)
        scaled_attention = self.head_drop(scaled_attention, training=training, drop_n_heads=drop_n_heads)

        scaled_attention = tf.transpose(scaled_attention,
                                        perm=[0, 2, 1, 3])  # (batch_size, seq_len_q, num_heads, depth)
        concat_attention = tf.reshape(scaled_attention,
                                      (batch_size, -1, self.model_dim))  # (batch_size, seq_len_q, model_dim)
        concat_query = tf.concat([q_in, concat_attention], axis=-1)
        output = self.dense(concat_query)  # (batch_size, seq_len_q, model_dim)

        return output, attention_weights