def get_experiment_environment(**args): from utils import setup_mpi_gpus, setup_tensorflow_session from baselines.common import set_global_seeds from gym.utils.seeding import hash_seed process_seed = args["seed"] + 1000 * MPI.COMM_WORLD.Get_rank() process_seed = hash_seed(process_seed, max_bytes=4) set_global_seeds(process_seed) setup_mpi_gpus() tf_context = setup_tensorflow_session() return tf_context
def get_experiment_environment(**args): from utils import setup_tensorflow_session from baselines.common import set_global_seeds from gym.utils.seeding import hash_seed process_seed = args["seed"] + 1000 * 0 process_seed = hash_seed(process_seed, max_bytes=4) set_global_seeds(process_seed) logger_context = logger.scoped_configure( dir=None, format_strs=['stdout', 'log', 'csv']) tf_context = setup_tensorflow_session() return logger_context, tf_context
def get_experiment_environment(**args): from utils import setup_mpi_gpus, setup_tensorflow_session from baselines.common import set_global_seeds from gym.utils.seeding import hash_seed process_seed = args["seed"] + 1000 * MPI.COMM_WORLD.Get_rank() process_seed = hash_seed(process_seed, max_bytes=4) set_global_seeds(process_seed) setup_mpi_gpus() logger_context = logger.scoped_configure(dir=args['env'], format_strs=['stdout', 'log', 'csv'] if MPI.COMM_WORLD.Get_rank() == 0 else ['log']) tf_context = setup_tensorflow_session() return logger_context, tf_context
def get_experiment_environment(**args): process_seed = 1234 + 1000 * MPI.COMM_WORLD.Get_rank() process_seed = hash_seed(process_seed, max_bytes=4) set_global_seeds(1234) setup_mpi_gpus() logger_context = logger.scoped_configure( dir='C:/Users/Elias/Desktop/savedunc/' + MODE + '_' + datetime.now().strftime('%Y_%m_%d_%H_%M_%S'), format_strs=['stdout', 'log', 'csv', 'tensorboard'] if MPI.COMM_WORLD.Get_rank() == 0 else ['log']) tf_context = setup_tensorflow_session() return logger_context, tf_context
def get_experiment_environment(**args): from utils import setup_mpi_gpus, setup_tensorflow_session from baselines.common import set_global_seeds from gym.utils.seeding import hash_seed process_seed = args["seed"] + 1000 * MPI.COMM_WORLD.Get_rank() process_seed = hash_seed(process_seed, max_bytes=4) set_global_seeds(process_seed) setup_mpi_gpus() logdir = './' + args["logdir"] + '/' + datetime.datetime.now().strftime( args["expID"] + "-openai-%Y-%m-%d-%H-%M-%S-%f") logger_context = logger.scoped_configure( dir=logdir, format_strs=['stdout', 'log', 'csv', 'tensorboard'] if MPI.COMM_WORLD.Get_rank() == 0 else ['log']) tf_context = setup_tensorflow_session() return logger_context, tf_context, logdir
def get_experiment_environment(**args): log_directory = osp.join( './output/' + datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f")) process_seed = args["seed"] + 1000 * MPI.COMM_WORLD.Get_rank() process_seed = hash_seed(process_seed, max_bytes=4) set_global_seeds(process_seed) # TODO: turn this back up when have GPU support! # setup_mpi_gpus() logger_context = logger.scoped_configure( dir=log_directory, format_strs=['stdout', 'log', 'csv'] if MPI.COMM_WORLD.Get_rank() == 0 else ['log']) tf_context = setup_tensorflow_session() return logger_context, tf_context
def play_experiment(**args): # 该函数在本文件中定义. 对不同的环境进行各种 wrapper. 这是一个函数, 并没有真正初始化环境 make_env = partial(make_env_all_params, args=args) # 初始化 tester = Tester(make_env=make_env, num_timesteps=args['num_timesteps'], hps=args, envs_per_process=1) from utils import setup_tensorflow_session tf_sess = setup_tensorflow_session() saver = tf.train.Saver() # model_path model_path = args['model_path'] with tf_sess: tester.play(tf_sess, args, saver, model_path)
def get_experiment_environment(**args): from utils import setup_mpi_gpus, setup_tensorflow_session from baselines.common import set_global_seeds from gym.utils.seeding import hash_seed process_seed = args["seed"] + 1000 * MPI.COMM_WORLD.Get_rank() process_seed = hash_seed(process_seed, max_bytes=4) set_global_seeds(process_seed) setup_mpi_gpus() time = datetime.datetime.now().strftime("%m-%d-%H-%M-%S") path_with_args = './logs/' + '_'.join([ time, args['exp_name'], args['env_kind'], args['feature_space'], str(args['envs_per_process']), str(args['train_discriminator']), str(args['discriminator_weighted']) ]) format_strs = ['stdout', 'log', 'csv', 'tensorboard' ] if MPI.COMM_WORLD.Get_rank() == 0 else ['log'] logger_context = logger.scoped_configure(dir=path_with_args, format_strs=format_strs) tf_context = setup_tensorflow_session() return logger_context, tf_context
def get_experiment_environment(**args): # 初始化 MPI 相关的量 from utils import setup_mpi_gpus, setup_tensorflow_session from baselines.common import set_global_seeds from gym.utils.seeding import hash_seed process_seed = args["seed"] + 1000 * MPI.COMM_WORLD.Get_rank() process_seed = hash_seed(process_seed, max_bytes=4) set_global_seeds(process_seed) setup_mpi_gpus() logger_dir = './logs/' + datetime.datetime.now().strftime( args["env"] + "-" + args["reward_type"] + "-" + str(args["nepochs_dvae"]) + "-" + str(args["stickyAtari"]) + "-%Y-%m-%d-%H-%M-%S-%f") logger_context = logger.scoped_configure( dir=logger_dir, format_strs=['stdout', 'log', 'csv'] if MPI.COMM_WORLD.Get_rank() == 0 else ['log']) tf_context = setup_tensorflow_session() # bai. 新增 saver 用于保存权重 saver = tf.train.Saver() return logger_context, tf_context, saver, logger_dir
def start_experiment(**args): # create environment # coinrun environment is already vectorized env, test_env = make_env_all_params(args=args) # set random seeds for reproducibility utils.set_global_seeds(seed=args['seed']) # create tf.session tf_sess = utils.setup_tensorflow_session() if args['server_type'] == 'local': logger_context = logger.scoped_configure(dir=args['log_dir'], format_strs=['stdout', 'csv']) else: logger_context = logger.scoped_configure(dir=args['log_dir'], format_strs=['csv']) with logger_context, tf_sess: print("logging directory: {}".format(args['log_dir'])) # create trainer trainer = Trainer(env=env, test_env=test_env, args=args) if args['evaluation'] == 1: # load_path is changed to model_path print('run.py, def start_experiment, evaluating model: {}'.format( args['load_path'])) trainer.eval() # this is for visualizing the loss landscape elif args['visualize'] == 1: print('running visualization...') trainer.visualize() else: print('run.py, def start_experiment, training begins...') trainer.train()