def on_bt_time_add_clicked(self, widget): if self.time_mark == "A": astr = self.label_A.get_text() a = utils.string_to_time(astr) a = a+1 self.label_A.set_text(utils.time_to_string(a)) elif self.time_mark == "B": astr = self.label_B.get_text() b = utils.string_to_time(astr) b = b+1 self.label_B.set_text(utils.time_to_string(b))
def on_bt_time_sub_clicked(self, widget): if self.time_mark == "A": astr = self.label_A.get_text() a = utils.string_to_time(astr) a = a-1 if a< 0 : a = 0 self.label_A.set_text(utils.time_to_string(a)) elif self.time_mark == "B": astr = self.label_B.get_text() b = utils.string_to_time(astr) b = b-1 if b < 0: b=0 self.label_B.set_text(utils.time_to_string(b))
def list(self, tid=None): ''' list all records whose parent is tid ''' R = Query() Records = self._DB.search(R['status'] != "DONE" and R['parent'] == tid) Records.sort(key=lambda R: utils.string_to_time(R['eta'])) return Records
def predict_time_instance(time, date, model): """ Predict the state of the light at a given time, based on previous collected data Input: time: time the prediction needs to be made. Given in string format "HH:MM" date: date of the prediction. Given in format "%yyyy-%mm-%dd" model: the trained model Returns: prediction: prediction of the state of the light (1 or 0). """ year, month, day = (int(x) for x in date.split('-')) day = datetime(year, month, day).strftime("%A") time = u.string_to_time(time) / TOTAL_TIME predict_vector = pd.DataFrame(np.array([time]), columns=[date]) predict_vector = u.day_of_week_one_hot(predict_vector) prediction = model.predict(predict_vector.values) prediction_class = tf.nn.sigmoid(prediction).numpy()[0, 0] return int(round(prediction_class))