class TestIhrmLogin(unittest.TestCase): def setUp(self): self.login_api = TestLoginApi() def tearDown(self): pass @parameterized.expand(test_data('./data/test_login.json')) def test01_login_success(self, data, httpcode, success, code, message): jsonData = data response = self.login_api.login(jsonData) logging.info('登录的结果为:', response.json()) assesr_common(httpcode, success, code, message, response, self) '''
def main (verbose = False): path_train = '../../data/restaurants_train.tsv' path_test = '../../data/restaurants_gold.tsv' prompt = 'please input path to SemEval 2014 CoNLL formatted training data: ' input_path_train = input(prompt) if input_path_train == '': pass else: path_train = input_path_train prompt = 'please input path to SemEval 2014 CoNLL formatted test data: ' input_path_test = input(prompt) if input_path_test == '': pass else: path_test = input_path_test df_train, df_test = load_test_train(path_train, path_test) embed_prompt = "please enter path to 300-dimensional Word2vec Google News vectors: " w2v_path = input (embed_prompt) xu_embed_prompt = "please enter path to Xu et al.'s 100-d restaurant domain vectors: " xuv_path = input (xu_embed_prompt) print("Thank you. Please wait while embeddings load") #load embeddings w2v, xuv = load_embeddings(w2v_path, xuv_path) X_train, X_valid, y_train, y_valid = training_data (w2v, xuv, df_train['word'], df_train['label']) X_test, label_index = test_data (w2v, xuv, df_test['word'], df_test['label']) # input("Ready to run?") # run DE_CNN NN batch_size = 128 embedding_dims = X_train.shape[2] kernel_size = 5 epochs = 200 model = run_cnn(X_train, y_train, X_valid, y_valid, embedding_dims = embedding_dims, batch_size = batch_size, kernel_size = kernel_size, epochs = 200, verbose = verbose) #predict predict(model, X_test, df_test, label_index)
module_name='partition_thrift') return make_client(partition_thrift.Partition, '127.0.0.1', 6000) def file_info(filename): with open(filename, 'rb') as file: file_content = file.read() return {filename: file_content} if __name__ == '__main__': # get time threshold threshold = float(input('Please input latency threshold: ')) # get test data dataiter = test_data() images, labels = dataiter.next() start = time.time() # get partition point and exit point ep, pp = Optimize(threshold) print('Branch is %d, and partition point is %d' % (ep, pp)) # infer left part out = infer(CLIENT, ep, pp, images) print('Left part of model inference complete.') # save intermediate for RPC process intermediate = out.detach().numpy()
import os from gensim.models import word2vec import numpy as np from utils import train_data, test_data DIM = 256 if __name__ == "__main__": print("Loading train data ...", flush=True) train_x1, _ = train_data("data/training_label.txt", True) train_x0 = train_data("data/training_nolabel.txt", False) print("Loading test data ...", flush=True) test_x = test_data("data/testing_data.txt") #print(np.percentile([len(i) for i in train_x1], 75)) #print(np.percentile([len(i) for i in train_x0], 75)) #print(np.percentile([len(i) for i in test_x], 75)) #exit() print("Word2Vec ...", flush=True) model = word2vec.Word2Vec(train_x1 + train_x0 + test_x, size=256, window=5, min_count=5, workers=12, iter=10, sg=1) print("Saving model ...", flush=True) model.save("w2v_model/w2v.model")
labels=tf.ones_like(real_predict))) dis_loss = fake_loss + real_loss var_list = tf.trainable_variables() g_var_list = [x for x in var_list if 'g_' in x.name] d_var_list = [x for x in var_list if 'd_' in x.name] with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): g_opt = tf.train.AdamOptimizer(0.0002, 0.5, 0.9) d_opt = tf.train.AdamOptimizer(0.0002, 0.5, 0.9) optim_gen = g_opt.compute_gradients(gen_loss, var_list=g_var_list) optim_g = g_opt.apply_gradients(optim_gen) optim_dis = d_opt.compute_gradients(dis_loss, var_list=d_var_list) optim_d = d_opt.apply_gradients(optim_dis) # the optim operation sample_gen = generator(x_place, reuse=True) #test files #restore from the checkpoint dir with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() # print('22') ckpt = tf.train.get_checkpoint_state(check_dir) # restore from the check point saver.restore(sess, ckpt.model_checkpoint_path) for i in range(batch_idx): _, x = test_data(i) feed_dict = {x_place: x} sample_imgs = sess.run(sample_gen, feed_dict=feed_dict) save_batch_imgs(sample_imgs, i, fig_dir)