def __classification_accuracy(self, sess, iter_init, idx, y_ph=None):
        """
        :param sess: TensorFlow session
        :param iter_init: TensorFlow data iterator initializer associated
        :param idx: insertion index (i.e. epoch - 1)
        :param y_ph: TensorFlow placeholder for unseen labels
        :return: None
        """
        if self.perf is None or y_ph is None:
            return

        # initialize results
        y = np.zeros([0, 1])
        y_hats = [np.zeros([0, 1])] * self.num_B_sub_heads

        # initialize unsupervised data iterator
        sess.run(iter_init)

        # loop over the batches within the unsupervised data iterator
        print('Evaluating classification accuracy... ')
        while True:
            try:
                # grab the results
                results = sess.run([self.y_hats, y_ph],
                                   feed_dict={self.is_training: False})

                # load metrics
                for i in range(self.num_B_sub_heads):
                    y_hats[i] = np.concatenate(
                        (y_hats[i], np.expand_dims(results[0][i], axis=1)))
                if y_ph is not None:
                    y = np.concatenate((y, np.expand_dims(results[1], axis=1)))

                # _, ax = plt.subplots(2, 10)
                # i_rand = np.random.choice(results[3].shape[0], 10)
                # for i in range(10):
                #     ax[0, i].imshow(results[3][i_rand[i]][:, :, 0], origin='upper', vmin=0, vmax=1)
                #     ax[0, i].set_xticks([])
                #     ax[0, i].set_yticks([])
                #     ax[1, i].imshow(results[4][i_rand[i]][:, :, 0], origin='upper', vmin=0, vmax=1)
                #     ax[1, i].set_xticks([])
                #     ax[1, i].set_yticks([])
                # plt.show()

            # iterator will throw this error when its out of data
            except tf.errors.OutOfRangeError:
                break

        # compute classification accuracy
        if y_ph is not None:
            class_errors = [
                unsupervised_labels(y, y_hats[i], self.k_B, self.k_B)
                for i in range(self.num_B_sub_heads)
            ]
            self.perf['class_err_min'][idx] = np.min(class_errors)
            self.perf['class_err_avg'][idx] = np.mean(class_errors)
            self.perf['class_err_max'][idx] = np.max(class_errors)

        # metrics are done
        print('Done')
예제 #2
0
    def eval(self):
        """Evaluate the accuracy of the current model weights
        """
        y_pred = self._model.predict(self.x_test)
        print("")
        # accuracy per head
        for head in range(self.args.heads):
            if self.args.heads == 1:
                y_head = y_pred
            else:
                y_head = y_pred[head]
            y_head = np.argmax(y_head, axis=1)

            accuracy = unsupervised_labels(list(self.y_test),
                                           list(y_head),
                                           self.n_labels,
                                           self.n_labels)
            info = "Head %d accuracy: %0.2f%%"
            if self.accuracy > 0:
                info += ", Old best accuracy: %0.2f%%" 
                data = (head, accuracy, self.accuracy)
            else:
                data = (head, accuracy)
            print(info % data)
            # if accuracy improves during training, 
            # save the model weights on a file
            if accuracy > self.accuracy \
                    and self.args.save_weights is not None:
                self.accuracy = accuracy
                folder = self.args.save_dir
                os.makedirs(folder, exist_ok=True) 
                path = os.path.join(folder, self.args.save_weights)
                print("Saving weights... ", path)
                self._model.save_weights(path)
예제 #3
0
    def eval(self):
        """
        @brief Evaluate the accuracy of the current model weights
        """
        y_pred = self._model.predict(self.x_test)
        # accuracy per head
        for head in range(self._heads):
            if self._heads == 1:
                y_head = y_pred
            else:
                y_head = y_pred[head]
            y_head = np.argmax(y_head, axis=1)

            accuracy = unsupervised_labels(list(self.y_test), list(y_head),
                                           self._z_dimension,
                                           self._z_dimension)
            info = "Head %d accuracy: %0.2f%%"
            if self._accuracy > 0:
                info += ", Old best accuracy: %0.2f%%"
                data = (head, accuracy, self._accuracy)
            else:
                data = (head, accuracy)
            print(info % data)