# ====================== parser = get_base_parser( 'Efficiently Trainable Text-to-Speech System Based on' + 'Deep Convolutional Networks with Guided Attention', SENTENCE, SAVE_WAV_PATH) # overwrite parser.add_argument('--input', '-i', metavar='TEXT', default=SENTENCE, help='input text') parser.add_argument('--ailia_audio', action='store_true', help='use ailia audio library') args = update_parser(parser, check_input_type=False) if args.ailia_audio: from pytorch_dc_tts_utils_ailia import get_test_data, save_to_wav else: from pytorch_dc_tts_utils import get_test_data, save_to_wav # ====================== # Main function # ====================== def preprocess(SENTENCE): L = get_test_data([SENTENCE], len(SENTENCE)) zeros = np.zeros((1, 80, 1), np.float32) Y = zeros A = None
MODEL_LISTS = ['small', 'large'] SLEEP_TIME = 0 # ====================== # Arguemnt Parser Config # ====================== parser = get_base_parser('ImageNet classification Model', IMAGE_PATH, None) parser.add_argument('-a', '--arch', metavar='ARCH', default='small', choices=MODEL_LISTS, help='model lists: ' + ' | '.join(MODEL_LISTS) + ' (default: small)') args = update_parser(parser) # ====================== # Parameters 2 # ====================== WEIGHT_PATH = f'mobilenetv3_{args.arch}.onnx' MODEL_PATH = WEIGHT_PATH + '.prototxt' REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/mobilenetv3/' # ====================== # Main functions # ====================== def recognize_from_image(): # prepare input data input_data = load_image(args.input, (IMAGE_HEIGHT, IMAGE_WIDTH),
# ====================== # Arguemnt Parser Config # ====================== parser = get_base_parser('CAIN', IMAGE_PATH, SAVE_IMAGE_PATH) parser.add_argument('-i2', '--input2', metavar='IMAGE2', default=None, help='The second input image path.') parser.add_argument('-hw', metavar='HEIGHT,WIDTH', default="256,448", help='Specify the size to resize on video mode.') args = update_parser(parser, large_model=True) # ====================== # Main functions # ====================== def preprocess(img): im_h, im_w, _ = img.shape ow, oh = im_w, im_h if im_w % (1 << 7) != 0: ow = (((im_w >> 7) + 1) << 7) if im_h % (1 << 7) != 0: oh = (((im_h >> 7) + 1) << 7)