def mode_7(sess, graph, save_path):
    """ to draw feature map
    """
    # normalize
    real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :]
    print('real_data.shape', real_data.shape)
    data_factory = DataFactory(real_data)
    target_data = np.load('FEATURES-6.npy')[:6]
    team_AB = np.concatenate(
        [
            # ball
            target_data[:, :, 0, :3].reshape(
                [target_data.shape[0], target_data.shape[1], 1 * 3]),
            # team A players
            target_data[:, :, 1:6, :2].reshape(
                [target_data.shape[0], target_data.shape[1], 5 * 2]),
            # team B players
            target_data[:, :, 6:11, :2].reshape(
                [target_data.shape[0], target_data.shape[1], 5 * 2])
        ], axis=-1
    )
    dummy_AB = np.zeros(shape=[128 - 6, 100, 23])
    team_AB = np.concatenate([team_AB, dummy_AB], axis=0)
    team_AB = data_factory.normalize(team_AB)
    team_A = team_AB[:, :, :13]
    team_B = team_AB[:, :, 13:]
    # placeholder tensor
    latent_input_t = graph.get_tensor_by_name('latent_input:0')
    team_a_t = graph.get_tensor_by_name('team_a:0')
    # result tensor
    conds_linear_t = graph.get_tensor_by_name(
        'Generator/G_inference/conds_linear/BiasAdd:0')

    if not os.path.exists(save_path):
        os.makedirs(save_path)

    # result collector
    latents = np.concatenate([z_samples(1)
                              for i in range(FLAGS.batch_size)], axis=0)
    feed_dict = {
        latent_input_t: latents,
        team_a_t: team_A
    }
    conds_linear = sess.run(conds_linear_t, feed_dict=feed_dict)
    for i in range(6):
        trace = go.Heatmap(z=conds_linear[i])
        data = [trace]
        plotly.offline.plot(data, filename=os.path.join(
            save_path, 'G_conds_linear' + str(i) + '.html'))

    print('!!Completely Saved!!')
def mode_6(sess, graph, save_path):
    """ to draw different length result
    """
    # normalize
    real_data = np.load(FLAGS.data_path)
    print('real_data.shape', real_data.shape)
    data_factory = DataFactory(real_data)
    target_data = np.load('FEATURES-7.npy')[:, :]
    team_AB = np.concatenate(
        [
            # ball
            target_data[:, :, 0, :3].reshape(
                [target_data.shape[0], target_data.shape[1], 1 * 3]),
            # team A players
            target_data[:, :, 1:6, :2].reshape(
                [target_data.shape[0], target_data.shape[1], 5 * 2]),
            # team B players
            target_data[:, :, 6:11, :2].reshape(
                [target_data.shape[0], target_data.shape[1], 5 * 2])
        ], axis=-1
    )
    team_AB = data_factory.normalize(team_AB)
    team_A = team_AB[:, :, :13]
    team_B = team_AB[:, :, 13:]
    # placeholder tensor
    latent_input_t = graph.get_tensor_by_name('latent_input:0')
    team_a_t = graph.get_tensor_by_name('team_a:0')
    # result tensor
    result_t = graph.get_tensor_by_name(
        'Generator/G_inference/conv_result/conv1d/Maximum:0')
    if not os.path.exists(save_path):
        os.makedirs(save_path)

    # result collector
    latents = z_samples(team_AB.shape[0])
    feed_dict = {
        latent_input_t: latents,
        team_a_t: team_A
    }
    result_fake_B = sess.run(result_t, feed_dict=feed_dict)
    results_A_fake_B = np.concatenate([team_A, result_fake_B], axis=-1)
    results_A_fake_B = data_factory.recover_data(results_A_fake_B)
    for i in range(results_A_fake_B.shape[0]):
        game_visualizer.plot_data(
            results_A_fake_B[i], target_data.shape[1], file_path=save_path + str(i) + '.mp4', if_save=True)

    print('!!Completely Saved!!')
def mode_1(sess, graph, save_path, is_valid=FLAGS.is_valid):
    """ to collect results 
    Saved Result
    ------------
    results_A_fake_B : float, numpy ndarray, shape=[n_latents=100, n_conditions=128*9, length=100, features=23]
        Real A + Fake B
    results_A_real_B : float, numpy ndarray, shape=[n_conditions=128*9, length=100, features=23]
        Real A + Real B
    results_critic_scores : float, numpy ndarray, shape=[n_latents=100, n_conditions=128*9]
        critic scores for each input data
    """
    # placeholder tensor
    latent_input_t = graph.get_tensor_by_name('latent_input:0')
    team_a_t = graph.get_tensor_by_name('team_a:0')
    G_samples_t = graph.get_tensor_by_name('G_samples:0')
    matched_cond_t = graph.get_tensor_by_name('matched_cond:0')
    # result tensor
    result_t = graph.get_tensor_by_name(
        'Generator/G_inference/conv_result/conv1d/Maximum:0')
    # critic_scores_t = graph.get_tensor_by_name(
    #     'Critic/C_inference_1/conv_output/Reshape:0')
    critic_scores_t = graph.get_tensor_by_name(
        'Critic/C_inference_1/linear_result/BiasAdd:0')

    if not os.path.exists(save_path):
        os.makedirs(save_path)

    real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :]
    print('real_data.shape', real_data.shape)
    # normalize
    data_factory = DataFactory(real_data)
    # result collector
    results_A_fake_B = []
    results_A_real_B = []
    results_critic_scores = []

    # shuffle the data
    train_data, valid_data = data_factory.fetch_data()
    if is_valid:
        target_data = valid_data
    else:
        target_data = train_data
    target_data = np.load('ADD-100.npy')
    team_AB = np.concatenate(
        [
            # ball
            target_data[:, :, 0, :3].reshape(
                [target_data.shape[0], target_data.shape[1], 1 * 3]),
            # team A players
            target_data[:, :, 1:6, :2].reshape(
                [target_data.shape[0], target_data.shape[1], 5 * 2]),
            # team B players
            target_data[:, :, 6:11, :2].reshape(
                [target_data.shape[0], target_data.shape[1], 5 * 2])
        ], axis=-1
    )
    team_AB = data_factory.normalize(team_AB)
    print(team_AB.shape)
    dummy_AB = np.zeros(shape=[98, 100, 23])
    team_AB = np.concatenate([team_AB, dummy_AB], axis=0)
    team_A = team_AB[:, :, :13]
    team_B = team_AB[:, :, 13:]

    # for idx in range(0, FLAGS.batch_size, FLAGS.batch_size):
    real_samples = team_B
    real_conds = team_A
    # generate result
    temp_critic_scores = []
    temp_A_fake_B = []
    for i in range(FLAGS.n_latents):
        latents = z_samples(FLAGS.batch_size)
        feed_dict = {
            latent_input_t: latents,
            team_a_t: real_conds
        }
        result = sess.run(
            result_t, feed_dict=feed_dict)
        feed_dict = {
            G_samples_t: result,
            matched_cond_t: real_conds
        }
        critic_scores = sess.run(
            critic_scores_t, feed_dict=feed_dict)
        temp_A_fake_B.append(data_factory.recover_data(
            np.concatenate([real_conds, result], axis=-1)))
        temp_critic_scores.append(critic_scores)
    results_A_fake_B.append(temp_A_fake_B)
    results_critic_scores.append(temp_critic_scores)
    # concat along with conditions dimension (axis=1)
    results_A_fake_B = np.concatenate(results_A_fake_B, axis=1)
    results_critic_scores = np.concatenate(results_critic_scores, axis=1)
    results_A = data_factory.recover_BALL_and_A(
        real_conds)
    results_real_B = data_factory.recover_B(
        real_samples)
    results_A_real_B = np.concatenate([results_A, results_real_B], axis=-1)
    # saved as numpy
    print(np.array(results_A_fake_B).shape)
    print(np.array(results_A_real_B).shape)
    print(np.array(results_critic_scores).shape)
    np.save(save_path + 'results_A_fake_B.npy',
            np.array(results_A_fake_B)[:, :30].astype(np.float32).reshape([FLAGS.n_latents, 30, FLAGS.seq_length, 23]))
    np.save(save_path + 'results_A_real_B.npy',
            np.array(results_A_real_B)[:30].astype(np.float32).reshape([30, FLAGS.seq_length, 23]))
    np.save(save_path + 'results_critic_scores.npy',
            np.array(results_critic_scores)[:, :30].astype(np.float32).reshape([FLAGS.n_latents, 30]))
    print('!!Completely Saved!!')
def rnn():
    """ to collect results vary in length
    Saved Result
    ------------
    results_A_fake_B : float, numpy ndarray, shape=[n_latents=100, n_conditions=100, length=100, features=23]
        Real A + Fake B
    results_A_real_B : float, numpy ndarray, shape=[n_conditions=100, length=100, features=23]
        Real A + Real B
    results_critic_scores : float, numpy ndarray, shape=[n_latents=100, n_conditions=100]
        critic scores for each input data
    """

    save_path = os.path.join(COLLECT_PATH, 'rnn')
    if not os.path.exists(save_path):
        os.makedirs(save_path)

    real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :]
    print('real_data.shape', real_data.shape)
    # DataFactory
    data_factory = DataFactory(real_data)
    # target data
    target_data = np.load('../../data/FixedFPS5.npy')[-100:]
    target_length = np.load('../../data/FixedFPS5Length.npy')[-100:]
    print('target_data.shape', target_data.shape)
    team_AB = np.concatenate(
        [
            # ball
            target_data[:, :, 0, :3].reshape(
                [target_data.shape[0], target_data.shape[1], 1 * 3]),
            # team A players
            target_data[:, :, 1:6, :2].reshape(
                [target_data.shape[0], target_data.shape[1], 5 * 2]),
            # team B players
            target_data[:, :, 6:11, :2].reshape(
                [target_data.shape[0], target_data.shape[1], 5 * 2])
        ], axis=-1
    )
    team_AB = data_factory.normalize(team_AB)
    team_A = team_AB[:, :, :13]
    team_B = team_AB[:, :, 13:]
    # result collector
    results_A_fake_B = []
    results_A_real_B = []
    config = TrainingConfig(235)
    with tf.get_default_graph().as_default() as graph:
        # model
        C = C_MODEL(config, graph)
        G = G_MODEL(config, C.inference, graph)
        tfconfig = tf.ConfigProto()
        tfconfig.gpu_options.allow_growth = True
        default_sess = tf.Session(config=tfconfig, graph=graph)
        # saver for later restore
        saver = tf.train.Saver(max_to_keep=0)  # 0 -> keep them all
        # restore model if exist
        saver.restore(default_sess, FLAGS.restore_path)
        print('successfully restore model from checkpoint: %s' %
              (FLAGS.restore_path))
        for idx in range(team_AB.shape[0]):
            # given 100(FLAGS.n_latents) latents generate 100 results on same condition at once
            real_samples = team_B[idx:idx + 1, :]
            real_samples = np.concatenate(
                [real_samples for _ in range(FLAGS.n_latents)], axis=0)
            real_conds = team_A[idx:idx + 1, :]
            real_conds = np.concatenate(
                [real_conds for _ in range(FLAGS.n_latents)], axis=0)
            # generate result
            latents = z_samples(FLAGS.n_latents)
            result = G.generate(default_sess, latents, real_conds)
            # calculate em distance
            recoverd_A_fake_B = data_factory.recover_data(
                np.concatenate([real_conds, result], axis=-1))
            # padding to length=200
            dummy = np.zeros(
                shape=[FLAGS.n_latents, team_AB.shape[1] - target_length[idx], team_AB.shape[2]])
            temp_A_fake_B_concat = np.concatenate(
                [recoverd_A_fake_B[:, :target_length[idx]], dummy], axis=1)
            results_A_fake_B.append(temp_A_fake_B_concat)
    print(np.array(results_A_fake_B).shape)
    # concat along with conditions dimension (axis=1)
    results_A_fake_B = np.stack(results_A_fake_B, axis=1)
    # real data
    results_A = data_factory.recover_BALL_and_A(team_A)
    results_real_B = data_factory.recover_B(team_B)
    results_A_real_B = data_factory.recover_data(team_AB)
    # saved as numpy
    print(np.array(results_A_fake_B).shape)
    print(np.array(results_A_real_B).shape)
    np.save(os.path.join(save_path, 'results_A_fake_B.npy'),
            np.array(results_A_fake_B).astype(np.float32).reshape([FLAGS.n_latents, team_AB.shape[0], team_AB.shape[1], 23]))
    np.save(os.path.join(save_path, 'results_A_real_B.npy'),
            np.array(results_A_real_B).astype(np.float32).reshape([team_AB.shape[0], team_AB.shape[1], 23]))
    print('!!Completely Saved!!')
def mode_5(sess, graph, save_path):
    """ to calculate hueristic score on selected result
    """
    NORMAL_C_ID = [154, 108, 32, 498, 2, 513, 263, 29, 439, 249, 504, 529, 24, 964, 641, 739, 214, 139, 819, 1078, 772, 349, 676, 1016, 582, 678, 39, 279,
                   918, 477, 809, 505, 896, 600, 564, 50, 810, 1132, 683, 578, 1131, 887, 621, 1097, 665, 528, 310, 631, 1102, 6, 945, 1020, 853, 490, 64, 1002, 656]
    NORMAL_N_ID = [58, 5, 47, 66, 79, 21, 70, 54, 3, 59, 67, 59, 84, 38, 71, 62, 55, 86, 14, 83, 94, 97, 83, 27, 38, 68, 95,
                   26, 60, 2, 54, 46, 34, 75, 38, 4, 59, 87, 52, 44, 92, 28, 86, 71, 24, 28, 13, 70, 87, 44, 52, 25, 59, 61, 86, 16, 98]
    GOOD_C_ID = [976, 879, 293, 750, 908, 878, 831, 1038, 486, 268,
                 265, 252, 1143, 383, 956, 974, 199, 777, 585, 34, 932]
    GOOD_N_ID = [52, 16, 87, 43, 45, 66, 22, 77, 36,
                 50, 47, 9, 34, 9, 82, 42, 65, 43, 7, 29, 62]
    BEST_C_ID = [570, 517, 962, 1088, 35, 623, 1081, 33, 255, 571,
                 333, 990, 632, 431, 453, 196, 991, 267, 591, 902, 597, 646]
    BEST_N_ID = [22, 42, 76, 92, 12, 74, 92, 58, 69, 69,
                 23, 63, 89, 7, 74, 27, 12, 20, 35, 77, 62, 63]

    DUMMY_ID = np.zeros(shape=[28])
    ALL_C_ID = np.concatenate(
        [NORMAL_C_ID, GOOD_C_ID, BEST_C_ID, DUMMY_ID]).astype(np.int32)
    ALL_N_ID = np.concatenate(
        [NORMAL_N_ID, GOOD_N_ID, BEST_N_ID, DUMMY_ID]).astype(np.int32)
    print(ALL_C_ID.shape)
    print(ALL_N_ID.shape)
    fake_result_AB = np.load(
        'v3/2/collect/mode_1/results_A_fake_B.npy')[ALL_N_ID, ALL_C_ID]
    real_result_AB = np.load(
        'v3/2/collect/mode_1/results_A_real_B.npy')[ALL_C_ID]
    print(fake_result_AB.shape)
    print(real_result_AB.shape)

    # normalize
    real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :]
    print('real_data.shape', real_data.shape)
    data_factory = DataFactory(real_data)
    fake_result_AB = data_factory.normalize(fake_result_AB)
    real_result_AB = data_factory.normalize(real_result_AB)

    # placeholder tensor
    real_data_t = graph.get_tensor_by_name('real_data:0')
    matched_cond_t = graph.get_tensor_by_name('matched_cond:0')
    # result tensor
    heuristic_penalty_pframe = graph.get_tensor_by_name(
        'Critic/C_inference/heuristic_penalty/Min:0')
    # 'Generator/G_loss/C_inference/linear_result/Reshape:0')

    if not os.path.exists(save_path):
        os.makedirs(save_path)
    # real
    feed_dict = {
        real_data_t: real_result_AB[:, :, 13:23],
        matched_cond_t: real_result_AB[:, :, :13]
    }
    real_hp_pframe = sess.run(heuristic_penalty_pframe, feed_dict=feed_dict)

    # fake
    feed_dict = {
        real_data_t: fake_result_AB[:, :, 13:23],
        matched_cond_t: fake_result_AB[:, :, :13]
    }
    fake_hp_pframe = sess.run(heuristic_penalty_pframe, feed_dict=feed_dict)

    print(np.mean(real_hp_pframe[:100]))
    print(np.mean(fake_hp_pframe[:100]))
    print('!!Completely Saved!!')
예제 #6
0
def mode_9(sess, graph, save_path, is_valid=FLAGS.is_valid):
    """ to collect results vary in length
    Saved Result
    ------------
    results_A_fake_B : float, numpy ndarray, shape=[n_latents=100, n_conditions=100, length=100, features=23]
        Real A + Fake B
    results_A_real_B : float, numpy ndarray, shape=[n_conditions=100, length=100, features=23]
        Real A + Real B
    results_critic_scores : float, numpy ndarray, shape=[n_latents=100, n_conditions=100]
        critic scores for each input data
    """
    # placeholder tensor
    latent_input_t = graph.get_tensor_by_name('Generator/latent_input:0')
    team_a_t = graph.get_tensor_by_name('Generator/team_a:0')
    G_samples_t = graph.get_tensor_by_name('Critic/G_samples:0')
    matched_cond_t = graph.get_tensor_by_name('Critic/matched_cond:0')
    # result tensor
    result_t = graph.get_tensor_by_name(
        'Generator/G_inference/conv_result/conv1d/Maximum:0')
    critic_scores_t = graph.get_tensor_by_name(
        'Critic/C_inference_1/conv_output/Reshape:0')

    if not os.path.exists(save_path):
        os.makedirs(save_path)

    real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :]
    print('real_data.shape', real_data.shape)
    # DataFactory
    data_factory = DataFactory(real_data)
    # target data
    target_data = np.load('../../data/FixedFPS5.npy')[-100:]
    target_length = np.load('../../data/FixedFPS5Length.npy')[-100:]
    print('target_data.shape', target_data.shape)
    team_AB = np.concatenate(
        [
            # ball
            target_data[:, :, 0, :3].reshape(
                [target_data.shape[0], target_data.shape[1], 1 * 3]),
            # team A players
            target_data[:, :, 1:6, :2].reshape(
                [target_data.shape[0], target_data.shape[1], 5 * 2]),
            # team B players
            target_data[:, :, 6:11, :2].reshape(
                [target_data.shape[0], target_data.shape[1], 5 * 2])
        ],
        axis=-1)
    team_AB = data_factory.normalize(team_AB)
    team_A = team_AB[:, :, :13]
    team_B = team_AB[:, :, 13:]
    # result collector
    results_A_fake_B = []
    results_A_real_B = []
    results_critic_scores = []

    for idx in range(team_AB.shape[0]):
        # given 100(FLAGS.n_latents) latents generate 100 results on same condition at once
        real_samples = team_B[idx:idx + 1, :target_length[idx]]
        real_samples = np.concatenate(
            [real_samples for _ in range(FLAGS.n_latents)], axis=0)
        real_conds = team_A[idx:idx + 1, :target_length[idx]]
        real_conds = np.concatenate(
            [real_conds for _ in range(FLAGS.n_latents)], axis=0)
        # generate result
        latents = z_samples(FLAGS.n_latents)
        feed_dict = {latent_input_t: latents, team_a_t: real_conds}
        result = sess.run(result_t, feed_dict=feed_dict)
        # calculate em distance
        feed_dict = {G_samples_t: result, matched_cond_t: real_conds}
        em_dist = sess.run(critic_scores_t, feed_dict=feed_dict)
        recoverd_A_fake_B = data_factory.recover_data(
            np.concatenate([real_conds, result], axis=-1))
        # padding to length=200
        dummy = np.zeros(shape=[
            FLAGS.n_latents, team_AB.shape[1] -
            target_length[idx], team_AB.shape[2]
        ])
        temp_A_fake_B_concat = np.concatenate([recoverd_A_fake_B, dummy],
                                              axis=1)
        results_A_fake_B.append(temp_A_fake_B_concat)
        results_critic_scores.append(em_dist)
    print(np.array(results_A_fake_B).shape)
    print(np.array(results_critic_scores).shape)
    # concat along with conditions dimension (axis=1)
    results_A_fake_B = np.stack(results_A_fake_B, axis=1)
    results_critic_scores = np.stack(results_critic_scores, axis=1)
    # real data
    results_A = data_factory.recover_BALL_and_A(team_A)
    results_real_B = data_factory.recover_B(team_B)
    results_A_real_B = data_factory.recover_data(team_AB)
    # saved as numpy
    print(np.array(results_A_fake_B).shape)
    print(np.array(results_A_real_B).shape)
    print(np.array(results_critic_scores).shape)
    np.save(
        save_path + 'results_A_fake_B.npy',
        np.array(results_A_fake_B).astype(np.float32).reshape(
            [FLAGS.n_latents, team_AB.shape[0], team_AB.shape[1], 23]))
    np.save(
        save_path + 'results_A_real_B.npy',
        np.array(results_A_real_B).astype(np.float32).reshape(
            [team_AB.shape[0], team_AB.shape[1], 23]))
    np.save(
        save_path + 'results_critic_scores.npy',
        np.array(results_critic_scores).astype(np.float32).reshape(
            [FLAGS.n_latents, team_AB.shape[0]]))
    print('!!Completely Saved!!')