def __init__(self, executable): """ init function Args: executable: target executable file path """ self.logger = LogUtil.get_logger() self.executable = executable self.elf = getELF(executable) self.arch = get_arch(self.elf) self.functions = {} self.addr2func = {} self.get_func() self.signs = {} self.explored_addr = [] self.matched = {} self.sign_cache_file = "/tmp/" + md5(executable) + "_sign.cache" if os.path.exists(self.sign_cache_file): with open(self.sign_cache_file) as f: data = f.read() try: self.signs = json.loads(data) except Exception as e: self.logger.error(str(e))
def __init__(self): self.logger = LogUtil.get_logger(self.__class__.__name__, "_logs") self.xml_parser = XMLParser(encoding="utf-8", huge_tree=True, ns_clean=True)
import json import unittest import time import os from config import BASE_DIR, BASE_HOST from page.index_page import IndexProxy from page.login_page import LoginProxy from utils import DriverUtil, LogUtil, case_driver_quit, jietu from parameterized import parameterized logger = LogUtil.get_logger() # 读取json 构造参数化数据 def get_data(): # 1.创建参数化数据的结果列表 result = [] # 2.读取json 构造参数化数据 # 通过项目绝对路径+数据位置 with open(BASE_DIR + "/data/test_login.json", "r", encoding="utf-8") as f: python_data = json.load(f) for i in python_data: username = i["username"] password = i["password"] code = i["code"] yuqi = i["yuqi"] result.append((username, password, code, yuqi)) # 3.返回参数化数据的结果列表 logger.info("参数化数据:{}".format(result)) return result
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE from pytorch_pretrained_bert.modeling import BertForSequenceClassification, BertConfig, WEIGHTS_NAME, CONFIG_NAME, BertPreTrainedModel from pytorch_pretrained_bert.tokenization import BertTokenizer from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear from bert_utils import BertForMultiLabelSequenceClassification from utils import DataHandler, EvaluationUtil, LogUtil # Taken and adapted from # https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/examples/run_classifier.py logger = LogUtil.get_logger("bert_multilabel", "_logs") # def accuracy_thresh(y_pred: Tensor, y_true: Tensor, thresh: float = 0.5, sigmoid: bool = True): "Compute accuracy when `y_pred` and `y_true` are the same size." if sigmoid: y_pred = y_pred.sigmoid() # return ((y_pred>thresh)==y_true.byte()).float().mean().item() return np.mean(((y_pred > thresh) == y_true.byte()).float().cpu().numpy(), axis=1).sum() class InputInstance(object):