예제 #1
0
    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export).

        Args:
            memory_efficient (bool): Whether to use memory-efficient version of swish.
        """
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
예제 #2
0
    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args

        # Batch norm parameters
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # Get stem static or dynamic convolution depending on image size
        image_size = global_params.image_size
        Conv2d = get_same_padding_conv2d(image_size=image_size)

        # Stem
        in_channels = 3  # rgb
        out_channels = round_filters(32, self._global_params)  # number of output channels
        self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
        image_size = calculate_output_image_size(image_size, 2)

        # Build blocks
        self._blocks = nn.ModuleList([])
        for block_args in self._blocks_args:

            # Update block input and output filters based on depth multiplier.
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters, self._global_params),
                output_filters=round_filters(block_args.output_filters, self._global_params),
                num_repeat=round_repeats(block_args.num_repeat, self._global_params)
            )

            # The first block needs to take care of stride and filter size increase.
            self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size))
            image_size = calculate_output_image_size(image_size, block_args.stride)
            if block_args.num_repeat > 1: # modify block_args to keep same output size
                block_args = block_args._replace(input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size))
                # image_size = calculate_output_image_size(image_size, block_args.stride)  # stride = 1

        # Head
        in_channels = block_args.output_filters  # output of final block
        out_channels = round_filters(1280, self._global_params)
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # Final linear layer
        self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        self._dropout = nn.Dropout(self._global_params.dropout_rate)
        self._fc = nn.Linear(out_channels, self._global_params.num_classes)
        self._swish = MemoryEfficientSwish()
예제 #3
0
    def __init__(self, block_args, global_params, image_size=None):
        super().__init__()
        self._block_args = block_args
        self._bn_mom = 1 - global_params.batch_norm_momentum # pytorch's difference from tensorflow
        self._bn_eps = global_params.batch_norm_epsilon
        self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip  # whether to use skip connection and drop connect

        # Expansion phase (Inverted Bottleneck)
        inp = self._block_args.input_filters  # number of input channels
        oup = self._block_args.input_filters * self._block_args.expand_ratio  # number of output channels
        if self._block_args.expand_ratio != 1:
            Conv2d = get_same_padding_conv2d(image_size=image_size)
            self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
            self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
            # image_size = calculate_output_image_size(image_size, 1) <-- this wouldn't modify image_size

        # Depthwise convolution phase
        k = self._block_args.kernel_size
        s = self._block_args.stride
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._depthwise_conv = Conv2d(
            in_channels=oup, out_channels=oup, groups=oup,  # groups makes it depthwise
            kernel_size=k, stride=s, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
        image_size = calculate_output_image_size(image_size, s)

        # Squeeze and Excitation layer, if desired
        if self.has_se:
            Conv2d = get_same_padding_conv2d(image_size=(1,1))
            num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
            self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
            self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)

        # Pointwise convolution phase
        final_oup = self._block_args.output_filters
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
        self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
        self._swish = MemoryEfficientSwish()
예제 #4
0
    def __init__(self, block_args, global_params):
        super().__init__()
        self._block_args = block_args
        self._bn_mom = 1 - global_params.batch_norm_momentum
        self._bn_eps = global_params.batch_norm_epsilon
        self.has_se = (self._block_args.se_ratio
                       is not None) and (0 < self._block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip  # skip connection and drop connect

        # Get static or dynamic convolution depending on image size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # Expansion phase
        inp = self._block_args.input_filters  # number of input channels
        oup = self._block_args.input_filters * self._block_args.expand_ratio  # number of output channels
        if self._block_args.expand_ratio != 1:
            self._expand_conv = Conv2d(in_channels=inp,
                                       out_channels=oup,
                                       kernel_size=1,
                                       bias=False)
            self._bn0 = nn.BatchNorm2d(num_features=oup,
                                       momentum=self._bn_mom,
                                       eps=self._bn_eps)

        # Depthwise convolution phase
        k = self._block_args.kernel_size
        s = self._block_args.stride
        self._depthwise_conv = Conv2d(
            in_channels=oup,
            out_channels=oup,
            groups=oup,  # groups makes it depthwise
            kernel_size=k,
            stride=s,
            bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=oup,
                                   momentum=self._bn_mom,
                                   eps=self._bn_eps)

        # Squeeze and Excitation layer, if desired
        if self.has_se:
            num_squeezed_channels = max(
                1,
                int(self._block_args.input_filters *
                    self._block_args.se_ratio))
            self._se_reduce = Conv2d(in_channels=oup,
                                     out_channels=num_squeezed_channels,
                                     kernel_size=1)
            self._se_expand = Conv2d(in_channels=num_squeezed_channels,
                                     out_channels=oup,
                                     kernel_size=1)

        # Output phase
        final_oup = self._block_args.output_filters
        self._project_conv = Conv2d(in_channels=oup,
                                    out_channels=final_oup,
                                    kernel_size=1,
                                    bias=False)
        self._bn2 = nn.BatchNorm2d(num_features=final_oup,
                                   momentum=self._bn_mom,
                                   eps=self._bn_eps)
        self._swish = MemoryEfficientSwish()
예제 #5
0
 def set_swish(self, memory_efficient=True):
     """Sets swish function as memory efficient (for training) or standard (for export)"""
     self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
     for block in self._blocks:
         block.set_swish(memory_efficient)
예제 #6
0
    def __init__(self,
                 blocks_args=None,
                 global_params=None,
                 ds_low=None,
                 ds_high=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        assert ds_high > ds_low, 'ds_high must be greater than ds_low'
        assert max(
            ds_high,
            ds_low) <= 32, 'downsampling time should not be greater than 32'
        self._global_params = global_params
        self._blocks_args = blocks_args
        self.ds_low = ds_low
        self.ds_high = ds_high

        # Get static or dynamic convolution depending on image size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # Batch norm parameters
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # Stem
        in_channels = 3  # rgb
        out_channels = round_filters(
            32, self._global_params)  # number of output channels
        self._conv_stem = Conv2d(in_channels,
                                 out_channels,
                                 kernel_size=3,
                                 stride=2,
                                 bias=False)
        self._bn0 = nn.BatchNorm2d(num_features=out_channels,
                                   momentum=bn_mom,
                                   eps=bn_eps)

        # Build blocks
        self._blocks = nn.ModuleList([])

        # Calculate the number of blocks
        block_indexs = [0, 1, 2, 4, 5, 6]
        if ds_high == None:
            self.num_blocks = 7
        else:
            self.num_blocks = round(math.log(self.ds_high, 2))

        for block_args in self._blocks_args[0:block_indexs[self.num_blocks]]:

            # Update block input and output filters based on depth multiplier.
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters,
                                            self._global_params),
                output_filters=round_filters(block_args.output_filters,
                                             self._global_params),
                num_repeat=round_repeats(block_args.num_repeat,
                                         self._global_params))

            # The first block needs to take care of stride and filter size increase.
            self._blocks.append(MBConvBlock(block_args, self._global_params))
            if block_args.num_repeat > 1:
                block_args = block_args._replace(
                    input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                self._blocks.append(
                    MBConvBlock(block_args, self._global_params))

        # Head
        in_channels = block_args.output_filters  # output of final block
        out_channels = round_filters(1280, self._global_params)
        #self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        #self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # Final linear layer
        #self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        #self._dropout = nn.Dropout(self._global_params.dropout_rate)
        #self._fc = nn.Linear(out_channels, self._global_params.num_classes)
        self._swish = MemoryEfficientSwish()
    def __init__(self,
                 blocks_args=None,
                 global_params=None,
                 norm='',
                 model_version=4):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self.g_cfg = global_params
        self.b_cfgs = blocks_args

        # Get static or dynamic convolution depending on image size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # Batch norm parameters
        bn_mom = 1 - self.g_cfg.batch_norm_momentum
        bn_eps = self.g_cfg.batch_norm_epsilon

        # Stem
        in_channels = 3  # rgb
        out_channels = round_filters(32,
                                     self.g_cfg)  # number of output channels
        self._conv_stem = Conv2d(in_channels,
                                 out_channels,
                                 kernel_size=3,
                                 stride=2,
                                 bias=False)
        # self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
        self._bn0 = get_norm(norm, out_channels)

        # Build blocks
        self._blocks = nn.ModuleList([])

        idx = 0
        out_inds = []
        out_channels = []
        for b_cfg in self.b_cfgs:
            # Update block input and output filters based on depth multiplier.
            b_cfg = b_cfg._replace(
                input_filters=round_filters(b_cfg.input_filters, self.g_cfg),
                output_filters=round_filters(b_cfg.output_filters, self.g_cfg),
                num_repeat=round_repeats(b_cfg.num_repeat, self.g_cfg))

            # The first block needs to take care of stride and filter size increase.
            self._blocks.append(MBConvBlock(b_cfg, self.g_cfg, norm))
            print(b_cfg.stride)
            if b_cfg.stride[0] != 1:
                out_inds.append(idx - 1)
                out_channels.append(b_cfg.input_filters)
            idx += 1
            if b_cfg.num_repeat > 1:
                b_cfg = b_cfg._replace(input_filters=b_cfg.output_filters,
                                       stride=1)
            for _ in range(b_cfg.num_repeat - 1):
                self._blocks.append(MBConvBlock(b_cfg, self.g_cfg, norm))
                idx += 1
        out_inds.append(idx - 1)
        out_channels.append(b_cfg.output_filters)
        self.out_block_inds_all_stage = out_inds
        self.out_block_inds = out_inds[1:]
        self._out_feature_channels = out_channels[1:]
        # Head
        # in_channels = block_args.output_filters  # output of final block
        # out_channels = round_filters(1280, self._global_params)
        # self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        # self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
        #
        # # Final linear layer
        # self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        # self._dropout = nn.Dropout(self._global_params.dropout_rate)
        # self._fc = nn.Linear(out_channels, self._global_params.num_classes)
        self._swish = MemoryEfficientSwish()