예제 #1
0
    def __init__(self,
                 dnn_layer_dims,
                 dnn_input_dim,
                 lr_input_dim,
                 model_type=ModelType.create_classification(),
                 is_infer=False):
        '''
        @dnn_layer_dims: list of integer
            DNN每一层的维度
        @dnn_input_dim: int
            DNN输入层的大小
        @lr_input_dim: int
            LR输入层大小
        @is_infer: bool
            是否建立预估模型
        '''
        self.dnn_layer_dims = dnn_layer_dims
        self.dnn_input_dim = dnn_input_dim
        self.lr_input_dim = lr_input_dim
        self.model_type = model_type
        self.is_infer = is_infer

        self._declare_input_layers()

        self.dnn = self._build_dnn_submodel_(self.dnn_layer_dims)
        self.lr = self._build_lr_submodel_()

        # 模型预测
        if self.model_type.is_classification():
            self.model = self._build_classification_model(self.dnn, self.lr)
        if self.model_type.is_regression():
            self.model = self._build_regression_model(self.dnn, self.lr)
예제 #2
0
    def __init__(self,
                 dnn_layer_dims,
                 dnn_input_dim,
                 lr_input_dim,
                 model_type=ModelType.create_classification(),
                 is_infer=False):
        '''
        @dnn_layer_dims: list of integer
            dims of each layer in dnn
        @dnn_input_dim: int
            size of dnn's input layer
        @lr_input_dim: int
            size of lr's input layer
        @is_infer: bool
            whether to build a infer model
        '''
        self.dnn_layer_dims = dnn_layer_dims
        self.dnn_input_dim = dnn_input_dim
        self.lr_input_dim = lr_input_dim
        self.model_type = model_type
        self.is_infer = is_infer

        self._declare_input_layers()

        self.dnn = self._build_dnn_submodel_(self.dnn_layer_dims)
        self.lr = self._build_lr_submodel_()

        # model's prediction
        # TODO(superjom) rename it to prediction
        if self.model_type.is_classification():
            self.model = self._build_classification_model(self.dnn, self.lr)
        if self.model_type.is_regression():
            self.model = self._build_regression_model(self.dnn, self.lr)
예제 #3
0
    def __init__(self,
                 dnn_dims=[],
                 vocab_sizes=[],
                 model_type=ModelType.create_classification(),
                 model_arch=ModelArch.create_rnn(),
                 share_semantic_generator=False,
                 class_num=2,
                 share_embed=False,
                 is_infer=False):
        """
        init dssm network
        :param dnn_dims: list of int (dimentions of each layer in semantic vector generator.)
        :param vocab_sizes: 2d tuple (size of both left and right items.)
        :param model_type: classification
        :param model_arch: model architecture
        :param share_semantic_generator: bool (whether to share the semantic vector generator for both left and right.)
        :param class_num: number of categories.
        :param share_embed: bool (whether to share the embeddings between left and right.)
        :param is_infer: inference
        """
        assert len(vocab_sizes) == 2, (
            "vocab sizes specify the sizes left and right inputs, dim is 2.")
        assert len(dnn_dims) > 1, "more than two layers is needed."

        self.dnn_dims = dnn_dims
        self.vocab_sizes = vocab_sizes
        self.share_semantic_generator = share_semantic_generator
        self.share_embed = share_embed
        self.model_type = ModelType(model_type)
        self.model_arch = ModelArch(model_arch)
        self.class_num = class_num
        self.is_infer = is_infer
        logger.warning("build DSSM model with config of %s, %s" %
                       (self.model_type, self.model_arch))
        logger.info("vocabulary sizes: %s" % str(self.vocab_sizes))

        _model_arch = {
            "rnn": self.create_rnn,
            "cnn": self.create_cnn,
            "fc": self.create_fc,
        }

        def _model_arch_creater(emb, prefix=""):
            sent_vec = _model_arch.get(str(model_arch))(emb, prefix)
            dnn = self.create_dnn(sent_vec, prefix)
            return dnn

        self.model_arch_creater = _model_arch_creater
        self.model_type_creater = self._build_classification_model
예제 #4
0
파일: train.py 프로젝트: fty8788/PaddleDNN
def train(data_path=None,
          model_type=ModelType.create_classification(),
          batch_size=100,
          num_passes=50,
          class_num=None,
          num_workers=1,
          use_gpu=False):
    '''
    Train the DNN.
    '''
    paddle.init(use_gpu=use_gpu, trainer_count=num_workers)

    # network config
    input_layer = paddle.layer.data(name='input_layer', type=paddle.data_type.dense_vector(feature_dim))
    dnn = create_dnn(input_layer)
    prediction = None
    label = None
    cost = None
    if args.model_type.is_classification():
        prediction = paddle.layer.fc(input=dnn, size=class_num, act=paddle.activation.Softmax())
        label = paddle.layer.data(name='label', type=paddle.data_type.integer_value(class_num))
        cost = paddle.layer.classification_cost(input=prediction, label=label)
    elif args.model_type.is_regression():
        prediction = paddle.layer.fc(input=dnn, size=1, act=paddle.activation.Linear())
        label = paddle.layer.data(name='label', type=paddle.data_type.dense_vector(1))
        cost = paddle.layer.mse_cost(input=prediction, label=label)

    # create parameters
    parameters = paddle.parameters.create(cost)

    # create optimizer
    optimizer = paddle.optimizer.Momentum(momentum=0)

    trainer = paddle.trainer.SGD(
        cost=cost, 
        extra_layers=paddle.evaluator.auc(input=prediction, label=label),
        parameters=parameters, update_equation=optimizer)

    feeding = {'input_layer': 0, 'label': 1}

    # event_handler to print training and testing info
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)

        if isinstance(event, paddle.event.EndPass):
            result = trainer.test(
                reader=paddle.batch(reader.test(data_path,
                                            feature_dim+1,
                                            args.model_type.is_classification()),
                            batch_size=batch_size),
                feeding=feeding)
            print "Test %d, Cost %f, %s" % (event.pass_id, result.cost, result.metrics)
            
            model_desc = "{type}".format(
                    type=str(args.model_type))
            with open("%sdnn_%s_pass_%05d.tar" %
                          (args.model_output_prefix, model_desc,
                           event.pass_id), "w") as f:
                parameters.to_tar(f)

    # training
    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(reader.train(data_path,
                                            feature_dim+1,
                                            args.model_type.is_classification()),
                    buf_size=batch_size*10),
            batch_size=batch_size),
        feeding=feeding,
        event_handler=event_handler,
        num_passes=num_passes)
예제 #5
0
    def __init__(self,
                 dnn_dims=[],
                 vocab_sizes=[],
                 model_type=ModelType.create_classification(),
                 model_arch=ModelArch.create_cnn(),
                 share_semantic_generator=False,
                 class_num=None,
                 share_embed=False,
                 is_infer=False):
        """
        :param dnn_dims: The dimention of each layer in the semantic vector
                         generator.
        :type dnn_dims: list of int
        :param vocab_sizes: The size of left and right items.
        :type vocab_sizes: A list having 2 elements.
        :param model_type: The type of task to train the DSSM model. The value
                           should be "rank: 0", "regression: 1" or
                           "classification: 2".
        :type model_type: int
        :param model_arch: A value indicating the model architecture to use.
        :type model_arch: int
        :param share_semantic_generator: A flag indicating whether to share the
                                         semantic vector between the left and
                                         the right item.
        :type share_semantic_generator: bool
        :param share_embed: A floag indicating whether to share the embeddings
                            between the left and the right item.
        :type share_embed: bool
        :param class_num: The number of categories.
        :type class_num: int
        """
        assert len(vocab_sizes) == 2, (
            "The vocab_sizes specifying the sizes left and right inputs. "
            "Its dimension should be 2.")
        assert len(dnn_dims) > 1, ("In the DNN model, more than two layers "
                                   "are needed.")

        self.dnn_dims = dnn_dims
        self.vocab_sizes = vocab_sizes
        self.share_semantic_generator = share_semantic_generator
        self.share_embed = share_embed
        self.model_type = ModelType(model_type)
        self.model_arch = ModelArch(model_arch)
        self.class_num = class_num
        self.is_infer = is_infer
        logger.warning("Build DSSM model with config of %s, %s" %
                       (self.model_type, self.model_arch))
        logger.info("The vocabulary size is : %s" % str(self.vocab_sizes))

        # bind model architecture
        _model_arch = {
            "cnn": self.create_cnn,
            "fc": self.create_fc,
            "rnn": self.create_rnn,
        }

        def _model_arch_creater(emb, prefix=""):
            sent_vec = _model_arch.get(str(model_arch))(emb, prefix)
            dnn = self.create_dnn(sent_vec, prefix)
            return dnn

        self.model_arch_creater = _model_arch_creater

        _model_type = {
            "classification": self._build_classification_model,
            "rank": self._build_rank_model,
            "regression": self._build_regression_model,
        }
        print("model type: ", str(self.model_type))
        self.model_type_creater = _model_type[str(self.model_type)]
예제 #6
0
def train(train_data_path=None,
          test_data_path=None,
          source_dic_path=None,
          target_dic_path=None,
          model_type=ModelType.create_classification(),
          model_arch=ModelArch.create_cnn(),
          batch_size=10,
          num_passes=10,
          share_semantic_generator=False,
          share_embed=False,
          class_num=None,
          num_workers=1,
          use_gpu=False):
    '''
    Train the DSSM.
    '''
    default_train_path = './data/rank/train.txt'
    default_test_path = './data/rank/test.txt'
    default_dic_path = './data/vocab.txt'
    if not model_type.is_rank():
        default_train_path = './data/classification/train.txt'
        default_test_path = './data/classification/test.txt'

    use_default_data = not train_data_path

    if use_default_data:
        train_data_path = default_train_path
        test_data_path = default_test_path
        source_dic_path = default_dic_path
        target_dic_path = default_dic_path

    dataset = reader.Dataset(
        train_path=train_data_path,
        test_path=test_data_path,
        source_dic_path=source_dic_path,
        target_dic_path=target_dic_path,
        model_type=model_type,
    )

    train_reader = paddle.batch(paddle.reader.shuffle(dataset.train,
                                                      buf_size=1000),
                                batch_size=batch_size)

    test_reader = paddle.batch(paddle.reader.shuffle(dataset.test,
                                                     buf_size=1000),
                               batch_size=batch_size)

    paddle.init(use_gpu=use_gpu, trainer_count=num_workers)

    cost, prediction, label = DSSM(
        dnn_dims=layer_dims,
        vocab_sizes=[
            len(load_dic(path)) for path in [source_dic_path, target_dic_path]
        ],
        model_type=model_type,
        model_arch=model_arch,
        share_semantic_generator=share_semantic_generator,
        class_num=class_num,
        share_embed=share_embed)()

    parameters = paddle.parameters.create(cost)

    adam_optimizer = paddle.optimizer.Adam(
        learning_rate=1e-3,
        regularization=paddle.optimizer.L2Regularization(rate=1e-3),
        model_average=paddle.optimizer.ModelAverage(average_window=0.5))

    trainer = paddle.trainer.SGD(
        cost=cost,
        extra_layers=paddle.evaluator.auc(input=prediction, label=label)
        if not model_type.is_rank() else None,
        parameters=parameters,
        update_equation=adam_optimizer)

    feeding = {}
    if model_type.is_classification() or model_type.is_regression():
        feeding = {'source_input': 0, 'target_input': 1, 'label_input': 2}
    else:
        feeding = {
            'source_input': 0,
            'left_target_input': 1,
            'right_target_input': 2,
            'label_input': 3
        }

    def _event_handler(event):
        '''
        Define batch handler
        '''
        if isinstance(event, paddle.event.EndIteration):
            # output train log
            if event.batch_id % args.num_batches_to_log == 0:
                logger.info(
                    "Pass %d, Batch %d, Cost %f, %s" %
                    (event.pass_id, event.batch_id, event.cost, event.metrics))

            # test model
            if event.batch_id > 0 and event.batch_id % args.num_batches_to_test == 0:
                if test_reader is not None:
                    if model_type.is_classification():
                        result = trainer.test(reader=test_reader,
                                              feeding=feeding)
                        logger.info("Test at Pass %d, %s" %
                                    (event.pass_id, result.metrics))
                    else:
                        result = None
            # save model
            if event.batch_id > 0 and event.batch_id % args.num_batches_to_save_model == 0:
                model_desc = "{type}_{arch}".format(type=str(args.model_type),
                                                    arch=str(args.model_arch))
                with open(
                        "%sdssm_%s_pass_%05d.tar" %
                    (args.model_output_prefix, model_desc, event.pass_id),
                        "w") as f:
                    parameters.to_tar(f)

    trainer.train(reader=train_reader,
                  event_handler=_event_handler,
                  feeding=feeding,
                  num_passes=num_passes)

    logger.info("Training has finished.")
예제 #7
0
    def __init__(self,
                 dnn_dims=[],
                 vocab_sizes=[],
                 model_type=ModelType.create_classification(),
                 model_arch=ModelArch.create_cnn(),
                 share_semantic_generator=False,
                 class_num=None,
                 share_embed=False,
                 is_infer=False):
        '''
        @dnn_dims: list of int
            dimentions of each layer in semantic vector generator.
        @vocab_sizes: 2-d tuple
            size of both left and right items.
        @model_type: int
            type of task, should be 'rank: 0', 'regression: 1' or 'classification: 2'
        @model_arch: int
            model architecture
        @share_semantic_generator: bool
            whether to share the semantic vector generator for both left and right.
        @share_embed: bool
            whether to share the embeddings between left and right.
        @class_num: int
            number of categories.
        '''
        assert len(
            vocab_sizes
        ) == 2, "vocab_sizes specify the sizes left and right inputs, and dim should be 2."
        assert len(dnn_dims) > 1, "more than two layers is needed."

        self.dnn_dims = dnn_dims
        self.vocab_sizes = vocab_sizes
        self.share_semantic_generator = share_semantic_generator
        self.share_embed = share_embed
        self.model_type = ModelType(model_type)
        self.model_arch = ModelArch(model_arch)
        self.class_num = class_num
        self.is_infer = is_infer
        logger.warning("build DSSM model with config of %s, %s" %
                       (self.model_type, self.model_arch))
        logger.info("vocabulary sizes: %s" % str(self.vocab_sizes))

        # bind model architecture
        _model_arch = {
            'cnn': self.create_cnn,
            'fc': self.create_fc,
            'rnn': self.create_rnn,
        }

        def _model_arch_creater(emb, prefix=''):
            sent_vec = _model_arch.get(str(model_arch))(emb, prefix)
            dnn = self.create_dnn(sent_vec, prefix)
            return dnn

        self.model_arch_creater = _model_arch_creater

        # build model type
        _model_type = {
            'classification': self._build_classification_model,
            'rank': self._build_rank_model,
            'regression': self._build_regression_model,
        }
        print 'model type: ', str(self.model_type)
        self.model_type_creater = _model_type[str(self.model_type)]