def get_symbol(ticker): if ticker is None: return 'Missing parameter: ' + _PARAM_TICKER name = pg.get_symbol_name(ticker) if name is None: return f'Symbol with ticker {ticker} NOT found!' else: return name[0]
import numpy as np import pandas as pd import dash import dash_core_components as dcc import dash_html_components as html from sklearn.linear_model import LinearRegression import utils.AlphaVantageUtils as av import utils.PostgresUtils as pg import utils.ModelUtils as mdl name = pg.get_symbol_name(av._TIC_MICROSOFT) df_prices = pg.get_prices_with_features(av._TIC_MICROSOFT, av._INT_DAILY, None, None, None) df_prices.drop(columns=['open', 'high', 'low', 'volume'], inplace=True) print(df_prices.info()) df_train, df_test = mdl.train_test_split(df_prices, 1000) predictions = [] train = df_train.drop(pg._COL_DATETIME, axis=1) test = df_test.drop(pg._COL_DATETIME, axis=1) print(train.shape) print(test.shape)