marker = marker_long all_marker.append(marker) data[eos][usim]["marker"] = marker data["allx"] = np.array(all_x) data["ally"] = np.array(all_y) data["allcol"] = np.array(all_col) data["allmarker"] = all_marker # for fits for eos in simlist.keys(): for usim in simlist[eos].keys(): if not data[eos][usim]["isprompt"]: total_x.append(data[eos][usim]["x"]) total_y.append(data[eos][usim]["y"]) # Printcolor.green("Data is collected") Printcolor.blue("Plotting Data") # def make_plot_name(v_n_x, v_n_y, v_n_col, do_plot_old_table): figname = '' figname = figname + v_n_x + '_' figname = figname + v_n_y + '_' figname = figname + v_n_col + '_' if do_plot_old_table: figname = figname + '_InclOldTbl2' figname = figname + '.png' return figname
def plot_disk_2d(): # tmp = d3class.get_data(688128, 3, "xy", "ang_mom_flux") # print(tmp.min(), tmp.max()) # print(tmp) # exit(1) # dens_unb_geo """ --- --- --- """ '''sly4 ''' simlist = [ "SLy4_M13641364_M0_SR", "SLy4_M13641364_M0_SR", "SLy4_M13641364_M0_SR", "SLy4_M13641364_M0_SR" ] # itlist = [434176, 475136, 516096, 565248] # itlist = [606208, 647168, 696320, 737280] # itlist = [434176, 516096, 647168, 737280] ''' ls220 ''' simlist = [ "LS220_M14691268_M0_LK_SR", "LS220_M14691268_M0_LK_SR", "LS220_M14691268_M0_LK_SR" ] #, "LS220_M14691268_M0_LK_SR"] itlist = [1515520, 1728512, 1949696] #, 2162688] ''' dd2 ''' simlist = [ "DD2_M13641364_M0_LK_SR_R04", "DD2_M13641364_M0_LK_SR_R04", "DD2_M13641364_M0_LK_SR_R04" ] #, "DD2_M13641364_M0_LK_SR_R04"] itlist = [1111116, 1741554, 2213326] #,2611022] # simlist = [ "DD2_M13641364_M0_LK_SR_R04", "BLh_M13641364_M0_LK_SR", "LS220_M14691268_M0_LK_SR", "SLy4_M13641364_M0_SR" ] itlist = [2611022, 1974272, 1949696, 737280] # # simlist = ["BLh_M13641364_M0_LK_SR"] itlist = [737280] v_ns = ["rho", "Ye"] rl = 3 plane = "xy" data_dic = {} Printcolor.blue("Collecting data...") for sim, it in zip(simlist, itlist): simit = str(sim) + str(it) data_dic[simit] = {} print("sim:{} it:{}".format(sim, it)) d3class = LOAD_PROFILE_XYXZ(sim) # d1class = ADD_METHODS_ALL_PAR(sim) x_arr = d3class.get_data(it, rl, plane, "x") y_arr = d3class.get_data(it, rl, plane, "y") data_dic[simit]["x_arr"] = x_arr data_dic[simit]["y_arr"] = y_arr for v_n in v_ns: data_arr = d3class.get_data(it, rl, plane, v_n) data_dic[simit][v_n] = data_arr Printcolor.green("Data is collected") # o_plot = PLOT_MANY_TASKS() o_plot.gen_set["figdir"] = __outplotdir__ o_plot.gen_set["type"] = "cartesian" o_plot.gen_set["figsize"] = ( 4.2, 3.6 ) #(4 * len(simlist), 6.0) # <->, |] # to match hists with (8.5, 2.7) o_plot.gen_set[ "figname"] = "disk_densmodes.png" # "DD2_1512_slices.png" # LS_1412_slices o_plot.gen_set["sharex"] = False o_plot.gen_set["sharey"] = True o_plot.gen_set["dpi"] = 128 o_plot.gen_set["subplots_adjust_h"] = -0.35 o_plot.gen_set["subplots_adjust_w"] = 0.05 o_plot.set_plot_dics = [] plot_x_i = 1 for sim, it in zip(simlist, itlist): simit = str(sim) + str(it) # mask = "x>0" v_n = "rho" cmap = 'Greys' xmin, xmax, ymin, ymax, zmin, zmax = UTILS.get_xmin_xmax_ymin_ymax_zmin_zmax( rl) rho_dic_xy = { 'task': 'colormesh', 'ptype': 'cartesian', 'aspect': 1., 'xarr': data_dic[simit]["x_arr"], "yarr": data_dic[simit]["y_arr"], "zarr": data_dic[simit][v_n], 'position': (1, plot_x_i), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'v_n_x': 'x', 'v_n_y': 'y', 'v_n': v_n, 'xmin': xmin, 'xmax': xmax, 'ymin': ymin, 'ymax': ymax, 'vmin': 1e-9, 'vmax': 1e-5, 'fill_vmin': False, # fills the x < vmin with vmin 'xscale': None, 'yscale': None, 'mask': mask, 'cmap': cmap, 'norm': "log", 'fancyticks': True, 'minorticks': True, 'title': {}, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } rho_dic_xy['cbar'] = { 'location': 'left -0.6 .00', 'label': r'$\rho$ [GEO]', # 'fmt': '%.1e', 'labelsize': 14, 'fontsize': 14 } o_plot.set_plot_dics.append(rho_dic_xy) # contour_dic_xy = { 'position': (1, plot_x_i), # 'title': '[{:.1f} ms]'.format(time_), 'task': 'contour', 'ptype': 'cartesian', 'aspect': 1., 'xarr': data_dic[simit]["x_arr"], "yarr": data_dic[simit]["y_arr"], "zarr": data_dic[simit][v_n], 'levels': [1.e13 / 6.176e+17], 'colors': ['white'], 'lss': ["-"], 'lws': [1.], 'v_n_x': 'x', 'v_n_y': 'y', 'v_n': 'rho', 'xscale': None, 'yscale': None, 'fancyticks': True, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } o_plot.set_plot_dics.append(contour_dic_xy) # --- mask = "x<0" v_n = "Ye" cmap = "bwr_r" ye_dic_xy = { 'task': 'colormesh', 'ptype': 'cartesian', 'aspect': 1., 'xarr': data_dic[simit]["x_arr"], "yarr": data_dic[simit]["y_arr"], "zarr": data_dic[simit][v_n], 'position': (1, plot_x_i), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'fill_vmin': False, # fills the x < vmin with vmin 'v_n_x': 'x', 'v_n_y': 'y', 'v_n': v_n, 'xmin': xmin, 'xmax': xmax, 'ymin': ymin, 'ymax': ymax, 'vmin': 0.01, 'vmax': 0.5, 'xscale': None, 'yscale': None, 'mask': mask, 'cmap': cmap, 'norm': None, 'fancyticks': True, 'minorticks': True, 'title': {}, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } ye_dic_xy['cbar'] = { 'location': 'right -.02 .00', 'label': r'$Y_e$', 'fmt': '%.1f', 'labelsize': 14, 'fontsize': 14 } o_plot.set_plot_dics.append(ye_dic_xy) plot_x_i += 1 o_plot.main() exit(1) o_plot = PLOT_MANY_TASKS() o_plot.gen_set["figdir"] = __outplotdir__ o_plot.gen_set["type"] = "cartesian" o_plot.gen_set["figsize"] = (4 * len(simlist), 6.0 ) # <->, |] # to match hists with (8.5, 2.7) o_plot.gen_set["figname"] = "disk_structure_last.png".format( simlist[0]) #"DD2_1512_slices.png" # LS_1412_slices o_plot.gen_set["sharex"] = False o_plot.gen_set["sharey"] = True o_plot.gen_set["dpi"] = 128 o_plot.gen_set["subplots_adjust_h"] = -0.35 o_plot.gen_set["subplots_adjust_w"] = 0.05 o_plot.set_plot_dics = [] # rl = 3 # o_plot.gen_set["figsize"] = (4.2 * len(simlist), 8.0 ) # <->, |] # to match hists with (8.5, 2.7) plot_x_i = 1 for sim, it in zip(simlist, itlist): print("sim:{} it:{}".format(sim, it)) d3class = LOAD_PROFILE_XYXZ(sim) d1class = ADD_METHODS_ALL_PAR(sim) t = d3class.get_time_for_it(it, d1d2d3prof="prof") tmerg = d1class.get_par("tmerg") xmin, xmax, ymin, ymax, zmin, zmax = UTILS.get_xmin_xmax_ymin_ymax_zmin_zmax( rl) # -------------------------------------------------------------------------- # -------------------------------------------------------------------------- mask = "x>0" # v_n = "rho" data_arr = d3class.get_data(it, rl, "xz", v_n) x_arr = d3class.get_data(it, rl, "xz", "x") z_arr = d3class.get_data(it, rl, "xz", "z") # print(data_arr); exit(1) contour_dic_xz = { 'task': 'contour', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_arr, "yarr": z_arr, "zarr": data_arr, 'levels': [1.e13 / 6.176e+17], 'position': (1, plot_x_i), # 'title': '[{:.1f} ms]'.format(time_), 'colors': ['white'], 'lss': ["-"], 'lws': [1.], 'v_n_x': 'x', 'v_n_y': 'y', 'v_n': 'rho', 'xscale': None, 'yscale': None, 'fancyticks': True, 'sharey': False, 'sharex': True, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } o_plot.set_plot_dics.append(contour_dic_xz) rho_dic_xz = { 'task': 'colormesh', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_arr, "yarr": z_arr, "zarr": data_arr, 'position': (1, plot_x_i), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'v_n_x': 'x', 'v_n_y': 'z', 'v_n': v_n, 'xmin': xmin, 'xmax': xmax, 'ymin': zmin, 'ymax': zmax, 'vmin': 1e-9, 'vmax': 1e-5, 'fill_vmin': False, # fills the x < vmin with vmin 'xscale': None, 'yscale': None, 'mask': mask, 'cmap': 'Greys', 'norm': "log", 'fancyticks': True, 'minorticks': True, 'title': { "text": sim.replace('_', '\_'), 'fontsize': 12 }, #'title': {"text": r'$t-t_{merg}:$' + r'${:.1f}$ [ms]'.format((t - tmerg) * 1e3), 'fontsize': 14}, 'sharey': False, 'sharex': True, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } # data_arr = d3class.get_data(it, rl, "xy", v_n) x_arr = d3class.get_data(it, rl, "xy", "x") y_arr = d3class.get_data(it, rl, "xy", "y") contour_dic_xy = { 'task': 'contour', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_arr, "yarr": y_arr, "zarr": data_arr, 'levels': [1.e13 / 6.176e+17], 'position': (2, plot_x_i), # 'title': '[{:.1f} ms]'.format(time_), 'colors': ['white'], 'lss': ["-"], 'lws': [1.], 'v_n_x': 'x', 'v_n_y': 'y', 'v_n': 'rho', 'xscale': None, 'yscale': None, 'fancyticks': True, 'sharey': False, 'sharex': True, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } o_plot.set_plot_dics.append(contour_dic_xy) rho_dic_xy = { 'task': 'colormesh', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_arr, "yarr": y_arr, "zarr": data_arr, 'position': (2, plot_x_i), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'v_n_x': 'x', 'v_n_y': 'y', 'v_n': v_n, 'xmin': xmin, 'xmax': xmax, 'ymin': ymin, 'ymax': ymax, 'vmin': 1e-9, 'vmax': 1e-5, 'fill_vmin': False, # fills the x < vmin with vmin 'xscale': None, 'yscale': None, 'mask': mask, 'cmap': 'Greys', 'norm': "log", 'fancyticks': True, 'minorticks': True, 'title': {}, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } # if plot_x_i == 1: rho_dic_xy['cbar'] = { 'location': 'bottom -.05 .00', 'label': r'$\rho$ [GEO]', # 'fmt': '%.1e', 'labelsize': 14, 'fontsize': 14 } if plot_x_i > 1: rho_dic_xz['sharey'] = True rho_dic_xy['sharey'] = True o_plot.set_plot_dics.append(rho_dic_xz) o_plot.set_plot_dics.append(rho_dic_xy) # ---------------------------------------------------------------------- v_n = "dens_unb_bern" # data_arr = d3class.get_data(it, rl, "xz", v_n) x_arr = d3class.get_data(it, rl, "xz", "x") z_arr = d3class.get_data(it, rl, "xz", "z") dunb_dic_xz = { 'task': 'colormesh', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_arr, "yarr": z_arr, "zarr": data_arr, 'position': (1, plot_x_i), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'v_n_x': 'x', 'v_n_y': 'z', 'v_n': v_n, 'xmin': xmin, 'xmax': xmax, 'ymin': zmin, 'ymax': zmax, 'vmin': 1e-10, 'vmax': 1e-7, 'fill_vmin': False, # fills the x < vmin with vmin 'xscale': None, 'yscale': None, 'mask': mask, 'cmap': 'Blues', 'norm': "log", 'fancyticks': True, 'minorticks': True, 'title': {}, #{"text": r'$t-t_{merg}:$' + r'${:.1f}$ [ms]'.format((t - tmerg) * 1e3), 'fontsize': 14}, 'sharex': True, # removes angular citkscitks 'sharey': False, 'fontsize': 14, 'labelsize': 14 } # data_arr = d3class.get_data(it, rl, "xy", v_n) x_arr = d3class.get_data(it, rl, "xy", "x") y_arr = d3class.get_data(it, rl, "xy", "y") dunb_dic_xy = { 'task': 'colormesh', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_arr, "yarr": y_arr, "zarr": data_arr, 'position': (2, plot_x_i), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'fill_vmin': False, # fills the x < vmin with vmin 'v_n_x': 'x', 'v_n_y': 'y', 'v_n': v_n, 'xmin': xmin, 'xmax': xmax, 'ymin': ymin, 'ymax': ymax, 'vmin': 1e-10, 'vmax': 1e-7, 'xscale': None, 'yscale': None, 'mask': mask, 'cmap': 'Blues', 'norm': "log", 'fancyticks': True, 'minorticks': True, 'title': {}, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } # if plot_x_i == 2: dunb_dic_xy['cbar'] = { 'location': 'bottom -.05 .00', 'label': r'$D_{\rm{unb}}$ [GEO]', # 'fmt': '%.1e', 'labelsize': 14, 'fontsize': 14 } if plot_x_i > 1: dunb_dic_xz['sharey'] = True dunb_dic_xy['sharey'] = True o_plot.set_plot_dics.append(dunb_dic_xz) o_plot.set_plot_dics.append(dunb_dic_xy) # ---------------------------------------------------------------------- mask = "x<0" # v_n = "Ye" cmap = "bwr_r" # data_arr = d3class.get_data(it, rl, "xz", v_n) x_arr = d3class.get_data(it, rl, "xz", "x") z_arr = d3class.get_data(it, rl, "xz", "z") ye_dic_xz = { 'task': 'colormesh', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_arr, "yarr": z_arr, "zarr": data_arr, 'position': (1, plot_x_i), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'fill_vmin': False, # fills the x < vmin with vmin 'v_n_x': 'x', 'v_n_y': 'z', 'v_n': v_n, 'xmin': xmin, 'xmax': xmax, 'ymin': zmin, 'ymax': zmax, 'vmin': 0.05, 'vmax': 0.5, 'xscale': None, 'yscale': None, 'mask': mask, 'cmap': cmap, 'norm': None, 'fancyticks': True, 'minorticks': True, 'title': {}, #{"text": r'$t-t_{merg}:$' + r'${:.1f}$ [ms]'.format((t - tmerg) * 1e3), 'fontsize': 14}, 'sharey': False, 'sharex': True, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } # data_arr = d3class.get_data(it, rl, "xy", v_n) x_arr = d3class.get_data(it, rl, "xy", "x") y_arr = d3class.get_data(it, rl, "xy", "y") ye_dic_xy = { 'task': 'colormesh', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_arr, "yarr": y_arr, "zarr": data_arr, 'position': (2, plot_x_i), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'fill_vmin': False, # fills the x < vmin with vmin 'v_n_x': 'x', 'v_n_y': 'y', 'v_n': v_n, 'xmin': xmin, 'xmax': xmax, 'ymin': ymin, 'ymax': ymax, 'vmin': 0.01, 'vmax': 0.5, 'xscale': None, 'yscale': None, 'mask': mask, 'cmap': cmap, 'norm': None, 'fancyticks': True, 'minorticks': True, 'title': {}, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } # if plot_x_i == 3: ye_dic_xy['cbar'] = { 'location': 'bottom -.05 .00', 'label': r'$Y_e$', 'fmt': '%.1f', 'labelsize': 14, 'fontsize': 14 } if plot_x_i > 1: ye_dic_xz['sharey'] = True ye_dic_xy['sharey'] = True o_plot.set_plot_dics.append(ye_dic_xz) o_plot.set_plot_dics.append(ye_dic_xy) # ---------------------------------------------------------- tcoll = d1class.get_par("tcoll_gw") if not np.isnan(tcoll) and t >= tcoll: print(tcoll, t) v_n = "lapse" mask = "z>0.15" data_arr = d3class.get_data(it, rl, "xz", v_n) x_arr = d3class.get_data(it, rl, "xz", "x") z_arr = d3class.get_data(it, rl, "xz", "z") lapse_dic_xz = { 'task': 'colormesh', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_arr, "yarr": z_arr, "zarr": data_arr, 'position': (1, plot_x_i), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'v_n_x': 'x', 'v_n_y': 'z', 'v_n': v_n, 'xmin': xmin, 'xmax': xmax, 'ymin': zmin, 'ymax': zmax, 'vmin': 0., 'vmax': 0.15, 'fill_vmin': False, # fills the x < vmin with vmin 'xscale': None, 'yscale': None, 'mask': mask, 'cmap': 'Greys', 'norm': None, 'fancyticks': True, 'minorticks': True, 'title': {}, #,{"text": r'$t-t_{merg}:$' + r'${:.1f}$ [ms]'.format((t - tmerg) * 1e3), #'fontsize': 14}, 'sharey': False, 'sharex': True, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } # data_arr = d3class.get_data(it, rl, "xy", v_n) # print(data_arr.min(), data_arr.max()); exit(1) x_arr = d3class.get_data(it, rl, "xy", "x") y_arr = d3class.get_data(it, rl, "xy", "y") lapse_dic_xy = { 'task': 'colormesh', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_arr, "yarr": y_arr, "zarr": data_arr, 'position': (2, plot_x_i), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'v_n_x': 'x', 'v_n_y': 'y', 'v_n': v_n, 'xmin': xmin, 'xmax': xmax, 'ymin': ymin, 'ymax': ymax, 'vmin': 0, 'vmax': 0.15, 'fill_vmin': False, # fills the x < vmin with vmin 'xscale': None, 'yscale': None, 'mask': mask, 'cmap': 'Greys', 'norm': None, 'fancyticks': True, 'minorticks': True, 'title': {}, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } # # if plot_x_i == 1: # rho_dic_xy['cbar'] = {'location': 'bottom -.05 .00', 'label': r'$\rho$ [GEO]', # 'fmt': '%.1e', # 'labelsize': 14, # 'fontsize': 14} if plot_x_i > 1: lapse_dic_xz['sharey'] = True lapse_dic_xy['sharey'] = True o_plot.set_plot_dics.append(lapse_dic_xz) o_plot.set_plot_dics.append(lapse_dic_xy) plot_x_i += 1 o_plot.main() exit(0)
def plot_correlation_from_two_datadirs_vertical(): sims = ['SFHo_M135135_LK', 'SFHo_M135135_M0', "SFHo_M13641364_M0_LK_SR"] colors = ["blue", "red", "green"] #, "orange"] lss = ["-", "--", "-."] #, ":"] rowdata = [ "/data1/numrel/WhiskyTHC/Backup/2017/", "/data1/numrel/WhiskyTHC/Backup/2017/", "/data1/numrel/WhiskyTHC/Backup/2018/GW170817/" ] datapaths = [ "/data01/numrel/vsevolod.nedora/postprocessed_radice2/", "/data01/numrel/vsevolod.nedora/postprocessed_radice2/", "/data01/numrel/vsevolod.nedora/postprocessed4/" ] v_ns = ["Y_e", "Y_e", "Y_e"] det = 0 masks = ["geo", "geo", "geo"] # dic_data = {} for sim, v_n, mask, path in zip(sims, v_ns, masks, datapaths): Paths.ppr_sims = path o = ADD_METHODS_ALL_PAR(sim) corr_table = o.get_outflow_corr(det, mask, "{}_{}".format(v_n, "theta")) dic_data[sim] = {} dic_data[sim]["data"] = corr_table.T hist = o.get_outflow_hist(det, mask, "theta") dic_data[sim]['hist'] = hist.T print(hist.T.shape) Printcolor.green("data in collected") # # for sim in sims: # dic_data[sim]['data'] /= np.sum(dic_data[sim]['data'][1:, 1:]) o_plot = PLOT_MANY_TASKS() o_plot.gen_set["figdir"] = __outplotdir__ o_plot.gen_set["type"] = "cartesian" o_plot.gen_set["figsize"] = (4.2, 3.6 * len(sims)) # <->, |] o_plot.gen_set["figname"] = "comparison.png".format("Ye") o_plot.gen_set["sharex"] = True o_plot.gen_set["sharey"] = False o_plot.gen_set["dpi"] = 128 o_plot.gen_set["subplots_adjust_h"] = 0.0 o_plot.gen_set["subplots_adjust_w"] = 0.0 o_plot.set_plot_dics = [] i = 1 for sim, ls, color in zip(sims, lss, colors): # HISTOGRAMS plot_dic = { 'task': 'hist1d', 'ptype': 'cartesian', 'position': (1, 1), 'data': dic_data[sim]["hist"], 'normalize': True, 'v_n_x': "theta", 'v_n_y': "mass", 'color': color, 'ls': ls, 'lw': 1., 'ds': 'steps', 'alpha': 1.0, 'xmin': 50., 'xamx': 90., 'ymin': 1e-4, 'ymax': 1e0, 'xlabel': Labels.labels("theta"), 'ylabel': r"$M_{\rm{ej}}/M$", 'label': sim.replace('_', '\_'), 'yscale': 'log', 'fancyticks': True, 'minorticks': True, 'fontsize': 14, 'labelsize': 14, 'sharex': True, # removes angular citkscitks 'sharey': False, 'title': {}, #{'text':sim.replace('_', '\_'), 'fontsize':12}, # 'textold': {'coords': (0.1, 0.1), 'text':sim.replace('_', '\_'), 'color': 'black', 'fs': 10}, 'legend': { 'loc': 'best', 'ncol': 1, 'fontsize': 10 } # 'loc': 'best', 'ncol': 2, 'fontsize': 18 } # if v_n == "tempterature": # if i!=1: # plot_dic['sharey'] = True o_plot.set_plot_dics.append(plot_dic) i = 2 for sim in sims: # CORRELATIONS corr_dic2 = { # relies on the "get_res_corr(self, it, v_n): " method of data object 'task': 'corr2d', 'dtype': 'corr', 'ptype': 'cartesian', 'data': dic_data[sim]['data'], 'position': (i, 1), 'v_n_x': 'theta', 'v_n_y': 'ye', 'v_n': 'mass', 'normalize': True, 'cbar': {}, 'cmap': 'viridis', #'set_under': 'white', #'set_over': 'black', 'xlabel': r"Angle from binary plane", 'ylabel': r"$Y_e$", 'xmin': 0., 'xmax': 90., 'ymin': 0.05, 'ymax': 0.5, 'vmin': 1e-4, 'vmax': 1e-2, 'xscale': "linear", 'yscale': "linear", 'norm': 'log', 'mask_below': None, 'mask_above': None, 'title': {}, # {"text": o_corr_data.sim.replace('_', '\_'), 'fontsize': 14}, 'fancyticks': True, 'minorticks': True, 'sharex': True, # removes angular citkscitks 'sharey': False, 'fontsize': 14, 'labelsize': 14, } corr_dic2["axhline"] = { "y": 0.25, "linestyle": "-", "linewidth": 0.5, "color": "black" } # corr_dic2["axvline"] = {"x": 0.25, "linestyle": "-", "linewidth": 0.5, "color": "black"} if sim == sims[-1]: corr_dic2['sharex'] = False if sim == sims[-1]: corr_dic2['cbar'] = \ {'location': 'right .03 .0', 'label': r"$M_{\rm{ej}}/M$", # 'fmt': '%.1f', 'labelsize': 14, 'fontsize': 14} o_plot.set_plot_dics.append(corr_dic2) i = i + 1 o_plot.main()
def plot_correlation(): sims = ['DD2_M13641364_M0_SR_R04', 'DD2_M13641364_M0_LK_SR_R04'] v_ns = ["Y_e", "Y_e"] det = 0 masks = ["geo", "geo"] # dic_data = {} for sim, v_n, mask in zip(sims, v_ns, masks): o = ADD_METHODS_ALL_PAR(sim) corr_table = o.get_outflow_corr(det, mask, "{}_{}".format(v_n, "theta")) dic_data[sim] = {} dic_data[sim]["data"] = corr_table.T hist = o.get_outflow_hist(det, mask, "theta") dic_data[sim]['hist'] = hist.T print(hist.T.shape) Printcolor.green("data in collected") # # for sim in sims: # dic_data[sim]['data'] /= np.sum(dic_data[sim]['data'][1:, 1:]) o_plot = PLOT_MANY_TASKS() o_plot.gen_set["figdir"] = __outplotdir__ o_plot.gen_set["type"] = "cartesian" o_plot.gen_set["figsize"] = (8., 5.6) # <->, |] o_plot.gen_set["figname"] = "comparison.png".format("Ye") o_plot.gen_set["sharex"] = False o_plot.gen_set["sharey"] = False o_plot.gen_set["dpi"] = 128 o_plot.gen_set["subplots_adjust_h"] = 0.0 o_plot.gen_set["subplots_adjust_w"] = 0.0 o_plot.set_plot_dics = [] i = 1 for sim in sims: # HISTOGRAMS plot_dic = { 'task': 'hist1d', 'ptype': 'cartesian', 'position': (1, i), 'data': dic_data[sim]["hist"], 'normalize': True, 'v_n_x': "theta", 'v_n_y': "mass", 'color': "black", 'ls': '-', 'lw': 1., 'ds': 'steps', 'alpha': 1.0, 'xmin': 0., 'xamx': 90., 'ymin': 1e-4, 'ymax': 1e0, 'xlabel': Labels.labels("theta"), 'ylabel': r"$M_{\rm{ej}}/M$", 'label': None, 'yscale': 'log', 'fancyticks': True, 'minorticks': True, 'fontsize': 14, 'labelsize': 14, 'sharex': True, # removes angular citkscitks 'sharey': False, 'title': { 'text': sim.replace('_', '\_'), 'fontsize': 12 }, # 'textold': {'coords': (0.1, 0.1), 'text':sim.replace('_', '\_'), 'color': 'black', 'fs': 10}, 'legend': {} # 'loc': 'best', 'ncol': 2, 'fontsize': 18 } # if v_n == "tempterature": if i != 1: plot_dic['sharey'] = True o_plot.set_plot_dics.append(plot_dic) # CORRELATIONS corr_dic2 = { # relies on the "get_res_corr(self, it, v_n): " method of data object 'task': 'corr2d', 'dtype': 'corr', 'ptype': 'cartesian', 'data': dic_data[sim]['data'], 'position': (2, i), 'v_n_x': 'theta', 'v_n_y': 'ye', 'v_n': 'mass', 'normalize': True, 'cbar': {}, 'cmap': 'viridis', #'set_under': 'white', #'set_over': 'black', 'xlabel': r"Angle from binary plane", 'ylabel': r"$Y_e$", 'xmin': 0., 'xmax': 90., 'ymin': 0.05, 'ymax': 0.5, 'vmin': 1e-4, 'vmax': 1e-2, 'xscale': "linear", 'yscale': "linear", 'norm': 'log', 'mask_below': None, 'mask_above': None, 'title': {}, # {"text": o_corr_data.sim.replace('_', '\_'), 'fontsize': 14}, 'fancyticks': True, 'minorticks': True, 'sharex': False, # removes angular citkscitks 'sharey': False, 'fontsize': 14, 'labelsize': 14, } corr_dic2["axhline"] = { "y": 0.25, "linestyle": "-", "linewidth": 0.5, "color": "black" } # corr_dic2["axvline"] = {"x": 0.25, "linestyle": "-", "linewidth": 0.5, "color": "black"} if i != 1: corr_dic2['sharey'] = True if sim == sims[-1]: corr_dic2['cbar'] = \ {'location': 'right .03 .0', 'label': r"$M_{\rm{ej}}/M$", # 'fmt': '%.1f', 'labelsize': 14, 'fontsize': 14} o_plot.set_plot_dics.append(corr_dic2) i = i + 1 o_plot.main()
def plot_hists_from_different_dirs(): # sims = ['SFHo_M135135_LK', 'SFHo_M135135_M0', 'SFHo_M13641364_M0_SR', "SFHo_M13641364_M0_LK_SR"] # sims = ['LS220_M135135_LK', 'LS220_M135135_M0', 'LS220_M13641364_M0_SR', "LS220_M13641364_M0_LK_SR"] # sims = ['DD2_M135135_LK', 'DD2_M135135_M0', 'DD2_M13641364_M0_SR_R04', "DD2_M13641364_M0_LK_SR_R04"] # sims = ['BHBlp_M130130_LK', 'BHBlp_M135135_M0'] # sims = ['BLh_M13651365_M0_SR', 'BLh_M13641364_M0_LK_SR'] sims = ['SLy4_M13641364_M0_SR', 'SLy4_M13641364_M0_LK_SR'] colors = ["blue", "red"]#, "green", "purple"] lss = ["-", "--"]#, "-.", ":"] # datapaths = ["/data01/numrel/vsevolod.nedora/postprocessed_radice2/", # "/data01/numrel/vsevolod.nedora/postprocessed_radice2/"] datapaths = ["/data01/numrel/vsevolod.nedora/postprocessed4/", "/data01/numrel/vsevolod.nedora/postprocessed4/"] # v_ns = ["Y_e", 'theta', 'entropy'] det = 0 masks = ['geo', 'geo', 'geo'] # dic_data = {} for v_n, mask in zip(v_ns, masks): dic_data[v_n+mask] = {} for sim, path in zip(sims, datapaths): dic_data[v_n+mask][sim] = {} Paths.ppr_sims = path o = ADD_METHODS_ALL_PAR(sim) # corr_table = o.get_outflow_corr(det, mask, "{}_{}".format(v_n, "theta")) # dic_data[v_n+mask][sim]["data"] = corr_table.T hist = o.get_outflow_hist(det, mask, v_n) dic_data[v_n+mask][sim]['hist'] = hist.T dic_data[v_n + mask][sim]['mej'] = sum(hist.T[:,1]) print(hist.T.shape) Printcolor.green("data in collected") # # for sim in sims: # dic_data[sim]['data'] /= np.sum(dic_data[sim]['data'][1:, 1:]) o_plot = PLOT_MANY_TASKS() o_plot.gen_set["figdir"] = __outplotdir__ o_plot.gen_set["type"] = "cartesian" o_plot.gen_set["figsize"] = (4.2*len(v_ns), 3.6) # <->, |] o_plot.gen_set["figname"] = "comparison_sly4.png" o_plot.gen_set["sharex"] = False o_plot.gen_set["sharey"] = False o_plot.gen_set["dpi"] = 128 o_plot.gen_set["subplots_adjust_h"] = 0.0 o_plot.gen_set["subplots_adjust_w"] = 0.0 o_plot.set_plot_dics = [] i = 1 for v_n, mask in zip(v_ns, masks): # textdic = {'task': 'text', 'ptype': 'cartesian', # 'position': (1, i), 'x': 0.5, 'y': 0.5, # 'text': r"{}".format(dic_data[v_n + mask][sim]['mej'] * 1e2) + "$[10^2M_{\odot}]$", 'fs': 12, # 'color': 'black', 'horal': True, 'transform': True} for sim, ls, color in zip(sims, lss, colors): # HISTOGRAMS mej = np.sum(dic_data[v_n + mask][sim]["hist"][:, 1]) plot_dic = { 'task': 'hist1d', 'ptype': 'cartesian', 'position': (1, i), 'data': dic_data[v_n+mask][sim]["hist"], 'normalize': False, 'v_n_x': v_n, 'v_n_y': "mass", 'color': color, 'ls': ls, 'lw': 1., 'ds': 'steps', 'alpha': 1.0, 'xmin': 0., 'xamx': 90., 'ymin': 1e-5, 'ymax': 1e-3, 'xlabel': Labels.labels(v_n), 'ylabel': r"$M_{\rm{ej}}$", 'label': None, 'yscale': 'log', 'fancyticks': True, 'minorticks': True, 'fontsize': 14, 'labelsize': 14, 'sharex': False, # removes angular citkscitks 'sharey': False, # 'yticks': [], 'title':{},#{'text':sim.replace('_', '\_'), 'fontsize':12}, # 'textold': {'coords': (0.1, 0.1), 'text':sim.replace('_', '\_'), 'color': 'black', 'fs': 10}, 'legend': {'loc': 'best', 'ncol': 1, 'fontsize': 10} # 'loc': 'best', 'ncol': 2, 'fontsize': 18 } # textdic = {'task': 'text', 'ptype': 'cartesian', # 'position': (1, i), 'x': 0.5, 'y': 0.5, # 'text': r"{}".format(mej * 1e2) + "$[10^2M_{\odot}]$", 'fs': 12, # 'color': 'black', 'horal': True, 'transform': True} # if v_n == "tempterature": # if i!=1: # plot_dic['sharey'] = True if v_n != v_ns[0]: plot_dic['sharey'] = False plot_dic['yticks'] = [] plot_dic['rmylbls'] = True plot_dic['ylabel'] = None if v_n == v_ns[0]: # mej = np.sum(dic_data[v_n+mask][sim]["hist"][:,1]) # o_plot.set_plot_dics.append(textdic) plot_dic['label'] = sim.replace('_', '\_') elif v_n == v_ns[-1]: mej = np.sum(dic_data[v_n + mask][sim]["hist"][:, 1]) plot_dic['label'] = r"$M_{\rm{ej}}$ "+"{:.2f}".format(mej * 1e2) + "$ [10^2M_{\odot}]$" if v_n == "theta": plot_dic['xmin'], plot_dic['xmax'] = 0., 90. plot_dic['xmajorticks'] = np.arange(5) * 90. / 4. plot_dic['xminorticks'] = np.arange(17) * 90. / 16 plot_dic['xmajorlabels'] = [r"$0^\circ$", r"$22.5^\circ$", r"$45^\circ$", r"$67.5^\circ$", r"$90^\circ$"] elif v_n == "entropy": plot_dic['xmin'], plot_dic['xmax'] = 5, 95. elif v_n == "Y_e": plot_dic['xmin'], plot_dic['xmax'] = 0.05, 0.45 o_plot.set_plot_dics.append(plot_dic) i = i + 1 o_plot.main() exit(1)