예제 #1
0
def test(args, model, testloader, criterion) -> Printer:
    model.eval()
    printer = Printer()
    with torch.no_grad():
        for batch_idx, (inputs, targets) in tqdm(enumerate(testloader),
                                                 total=len(testloader)):
            inputs, targets = inputs.to(args.device), targets.to(args.device)
            outputs = model(inputs)
            loss = criterion(outputs, targets)

            printer.update(loss, outputs, targets)

    print(printer)
    return printer
예제 #2
0
def train(args, model, trainloader, criterion, optimizer, scheduler) -> None:
    if args.transfer:
        print("transfer in eval mode")
        model.eval()
    else:
        model.train()
    printer = Printer()
    pbar = tqdm(range(args.epochs), total=args.epochs)
    for epoch in pbar:
        scheduler.step()
        for batch_idx, (inputs, targets) in enumerate(trainloader):
            inputs, targets = inputs.to(args.device), targets.to(args.device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()
            printer.update(loss, outputs, targets)

        # if epoch % args.print == 0:
        pbar.set_description(f'Epoch: {epoch}, {printer}')
예제 #3
0
파일: train.py 프로젝트: jjhu94/dgl-1
def main(rank, args):
    """
    Parameters
    ----------
    rank : int
        Subprocess id
    args : dict
        Configuration
    """
    if rank == 0:
        t1 = time.time()

    set_random_seed(args['seed'])
    # Remove the line below will result in problems for multiprocess
    torch.set_num_threads(1)

    # Setup dataset and data loader
    dataset = MoleculeDataset(args['dataset'],
                              args['order'], ['train', 'val'],
                              subset_id=rank,
                              n_subsets=args['num_processes'])

    # Note that currently the batch size for the loaders should only be 1.
    train_loader = DataLoader(dataset.train_set,
                              batch_size=args['batch_size'],
                              shuffle=True,
                              collate_fn=dataset.collate)
    val_loader = DataLoader(dataset.val_set,
                            batch_size=args['batch_size'],
                            shuffle=True,
                            collate_fn=dataset.collate)

    if rank == 0:
        try:
            from tensorboardX import SummaryWriter
            writer = SummaryWriter(args['log_dir'])
        except ImportError:
            print(
                'If you want to use tensorboard, install tensorboardX with pip.'
            )
            writer = None
        train_printer = Printer(args['nepochs'], len(dataset.train_set),
                                args['batch_size'], writer)
        val_printer = Printer(args['nepochs'], len(dataset.val_set),
                              args['batch_size'])
    else:
        val_printer = None

    # Initialize model
    model = DGMG(atom_types=dataset.atom_types,
                 bond_types=dataset.bond_types,
                 node_hidden_size=args['node_hidden_size'],
                 num_prop_rounds=args['num_propagation_rounds'],
                 dropout=args['dropout'])

    if args['num_processes'] == 1:
        from utils import Optimizer
        optimizer = Optimizer(args['lr'],
                              Adam(model.parameters(), lr=args['lr']))
    else:
        from utils import MultiProcessOptimizer
        optimizer = MultiProcessOptimizer(
            args['num_processes'], args['lr'],
            Adam(model.parameters(), lr=args['lr']))

    if rank == 0:
        t2 = time.time()
    best_val_prob = 0

    # Training
    for epoch in range(args['nepochs']):
        model.train()
        if rank == 0:
            print('Training')

        for i, data in enumerate(train_loader):
            log_prob = model(actions=data, compute_log_prob=True)
            prob = log_prob.detach().exp()

            loss_averaged = -log_prob
            prob_averaged = prob
            optimizer.backward_and_step(loss_averaged)
            if rank == 0:
                train_printer.update(epoch + 1, loss_averaged.item(),
                                     prob_averaged.item())

        synchronize(args['num_processes'])

        # Validation
        val_log_prob = evaluate(epoch, model, val_loader, val_printer)
        if args['num_processes'] > 1:
            dist.all_reduce(val_log_prob, op=dist.ReduceOp.SUM)
        val_log_prob /= args['num_processes']
        # Strictly speaking, the computation of probability here is different from what is
        # performed on the training set as we first take an average of log likelihood and then
        # take the exponentiation. By Jensen's inequality, the resulting value is then a
        # lower bound of the real probabilities.
        val_prob = (-val_log_prob).exp().item()
        val_log_prob = val_log_prob.item()
        if val_prob >= best_val_prob:
            if rank == 0:
                torch.save({'model_state_dict': model.state_dict()},
                           args['checkpoint_dir'])
                print(
                    'Old val prob {:.10f} | new val prob {:.10f} | model saved'
                    .format(best_val_prob, val_prob))
            best_val_prob = val_prob
        elif epoch >= args['warmup_epochs']:
            optimizer.decay_lr()

        if rank == 0:
            print('Validation')
            if writer is not None:
                writer.add_scalar('validation_log_prob', val_log_prob, epoch)
                writer.add_scalar('validation_prob', val_prob, epoch)
                writer.add_scalar('lr', optimizer.lr, epoch)
            print('Validation log prob {:.4f} | prob {:.10f}'.format(
                val_log_prob, val_prob))

        synchronize(args['num_processes'])

    if rank == 0:
        t3 = time.time()
        print('It took {} to setup.'.format(datetime.timedelta(seconds=t2 -
                                                               t1)))
        print('It took {} to finish training.'.format(
            datetime.timedelta(seconds=t3 - t2)))
        print(
            '--------------------------------------------------------------------------'
        )
        print('On average, an epoch takes {}.'.format(
            datetime.timedelta(seconds=(t3 - t2) / args['nepochs'])))