def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) check_output_dir(training_args) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED), training_args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = BartConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(training_args, p, None): assert hasattr( config, p ), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(config, p, getattr(training_args, p)) tokenizer = BartTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) model = BartForConditionalGeneration.from_pretrained( model_args.model_name_or_path, from_tf=".ckpt" in model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, ) # use task specific params use_task_specific_params(model, data_args.task) # set num_beams for evaluation if data_args.eval_beams is None: data_args.eval_beams = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance( tokenizer, MBartTokenizer): assert (data_args.tgt_lang is not None and data_args.src_lang is not None), "mBart requires --tgt_lang and --src_lang" model.config.decoder_start_token_id = tokenizer.lang_code_to_id[ data_args.tgt_lang] if model_args.freeze_embeds: freeze_embeds(model) if model_args.freeze_encoder: freeze_params(model.get_encoder()) assert_all_frozen(model.get_encoder()) dataset_class = Seq2SeqDataset # Get datasets train_dataset = (dataset_class( tokenizer, type_path="train", data_dir=data_args.data_dir, n_obs=data_args.n_train, max_target_length=data_args.max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_train else None) eval_dataset = (dataset_class( tokenizer, type_path="val", data_dir=data_args.data_dir, n_obs=data_args.n_val, max_target_length=data_args.val_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None) test_dataset = (dataset_class( tokenizer, type_path="test", data_dir=data_args.data_dir, n_obs=data_args.n_test, max_target_length=data_args.test_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_predict else None) # Initialize our Trainer compute_metrics_fn = (build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None) trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=Seq2SeqDataCollator(tokenizer, data_args, training_args.tpu_num_cores), compute_metrics=compute_metrics_fn, tokenizer=tokenizer, ) all_metrics = {} # Training if training_args.do_train: logger.info("*** Train ***") train_result = trainer.train( model_path=model_args.model_name_or_path if os.path. isdir(model_args.model_name_or_path) else None) metrics = train_result.metrics metrics["train_n_objs"] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train", metrics, training_args.output_dir) all_metrics.update(metrics) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json( os.path.join(training_args.output_dir, "trainer_state.json")) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate(metric_key_prefix="val", max_length=data_args.val_max_target_length, num_beams=data_args.eval_beams) metrics["val_n_objs"] = data_args.n_val metrics["val_loss"] = round(metrics["val_loss"], 4) if trainer.is_world_process_zero(): handle_metrics("val", metrics, training_args.output_dir) all_metrics.update(metrics) if training_args.do_predict: logger.info("*** Predict ***") test_output = trainer.predict( test_dataset=test_dataset, metric_key_prefix="test", max_length=data_args.val_max_target_length, num_beams=data_args.eval_beams, ) metrics = test_output.metrics metrics["test_n_objs"] = data_args.n_test if trainer.is_world_process_zero(): metrics["test_loss"] = round(metrics["test_loss"], 4) handle_metrics("test", metrics, training_args.output_dir) all_metrics.update(metrics) if training_args.predict_with_generate: test_preds = tokenizer.batch_decode( test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True) test_preds = lmap(str.strip, test_preds) write_txt_file( test_preds, os.path.join(training_args.output_dir, "test_generations.txt")) if trainer.is_world_process_zero(): save_json(all_metrics, os.path.join(training_args.output_dir, "all_results.json")) return all_metrics
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) check_output_dir(training_args) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED), training_args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(training_args, p, None): assert hasattr( config, p ), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(config, p, getattr(training_args, p)) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) model = AutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, from_tf=".ckpt" in model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, ) # use task specific params use_task_specific_params(model, data_args.task) # set num_beams for evaluation if data_args.eval_beams is None: data_args.eval_beams = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance( tokenizer, MBartTokenizer): assert (data_args.tgt_lang is not None and data_args.src_lang is not None), "mBart requires --tgt_lang and --src_lang" model.config.decoder_start_token_id = tokenizer.lang_code_to_id[ data_args.tgt_lang] if model_args.freeze_embeds: freeze_embeds(model) if model_args.freeze_encoder: freeze_params(model.get_encoder()) assert_all_frozen(model.get_encoder()) dataset_class = Seq2SeqDataset # Get datasets train_dataset = (dataset_class( tokenizer, type_path="train", data_dir=data_args.data_dir, n_obs=data_args.n_train, max_target_length=data_args.max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_train else None) eval_dataset = (dataset_class( tokenizer, type_path="val", data_dir=data_args.data_dir, n_obs=data_args.n_val, max_target_length=data_args.val_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None) test_dataset = (dataset_class( tokenizer, type_path="test", data_dir=data_args.data_dir, n_obs=data_args.n_test, max_target_length=data_args.test_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_predict else None) # Initialize our Trainer compute_metrics_fn = (build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None) trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=Seq2SeqDataCollator(tokenizer, data_args, training_args.tpu_num_cores), compute_metrics=compute_metrics_fn, tokenizer=tokenizer, ) all_metrics = {} # Training if training_args.do_train: logger.info("*** Train ***") train_result = trainer.train( model_path=model_args.model_name_or_path if os.path. isdir(model_args.model_name_or_path) else None) metrics = train_result.metrics metrics["train_n_objs"] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train", metrics, training_args.output_dir) all_metrics.update(metrics) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json( os.path.join(training_args.output_dir, "trainer_state.json")) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir) if training_args.tune: def eval_func_for_lpot(model): trainer.model = model results = trainer.evaluate( eval_dataset=eval_dataset, metric_key_prefix="val", max_length=data_args.val_max_target_length, num_beams=data_args.eval_beams) assert data_args.task.startswith("summarization") or data_args.task.startswith("translation") , \ "data_args.task should startswith summarization or translation" task_metrics_keys = [ 'val_bleu', 'val_rouge1', 'val_rouge2', 'val_rougeL', 'val_rougeLsum' ] for key in task_metrics_keys: if key in results.keys(): logger.info("Finally Eval {}:{}".format(key, results[key])) if 'bleu' in key: acc = results[key] break if 'rouge' in key: acc = sum( [v for k, v in results.items() if "rouge" in k]) / 4 break return acc from lpot.experimental import Quantization, common quantizer = Quantization("./conf.yaml") quantizer.model = common.Model(model) quantizer.calib_dataloader = common.DataLoader( eval_dataset, batch_size=training_args.eval_batch_size, collate_fn=Seq2SeqDataCollator_lpot(tokenizer, data_args, training_args.tpu_num_cores)) quantizer.eval_func = eval_func_for_lpot q_model = quantizer() q_model.save(training_args.tuned_checkpoint) exit(0) if training_args.benchmark: if training_args.int8: from lpot.utils.pytorch import load new_model = load( os.path.abspath( os.path.expanduser(training_args.tuned_checkpoint)), model) else: new_model = model trainer.model = new_model results = trainer.evaluate( eval_dataset=eval_dataset, metric_key_prefix="val", max_length=data_args.val_max_target_length, num_beams=data_args.eval_beams, iters=training_args.iters, warmup_iter=training_args.warmup_iter, ) if data_args.task.startswith("summarization"): print('Accuracy: %.4f' % (sum([v for k, v in results.items() if "rouge" in k]) / 4)) if data_args.task.startswith("translation"): print('Accuracy: %.4f' % (results['val_bleu'])) print('Throughput: %.3f samples/sec' % (results["val_samples_per_second"])) print('Latency: %.3f ms' % (1 * 1000 / results["val_samples_per_second"])) print('Batch size = %d' % training_args.per_device_eval_batch_size) exit(0) if training_args.accuracy_only: if training_args.int8: from lpot.utils.pytorch import load new_model = load( os.path.abspath( os.path.expanduser(training_args.tuned_checkpoint)), model) else: new_model = model trainer.model = new_model results = trainer.evaluate( eval_dataset=eval_dataset, metric_key_prefix="val", max_length=data_args.val_max_target_length, num_beams=data_args.eval_beams, ) if data_args.task.startswith("summarization"): print('Accuracy: %.4f' % (sum([v for k, v in results.items() if "rouge" in k]) / 4)) if data_args.task.startswith("translation"): print('Accuracy: %.4f' % (results['val_bleu'])) print('Latency: %.3f ms' % (1 * 1000 / results["val_samples_per_second"])) print('Batch size = %d' % training_args.per_device_eval_batch_size) exit(0) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate( metric_key_prefix="val", max_length=data_args.val_max_target_length, num_beams=data_args.eval_beams, ) metrics["val_n_objs"] = data_args.n_val metrics["val_loss"] = round(metrics["val_loss"], 4) if trainer.is_world_process_zero(): handle_metrics("val", metrics, training_args.output_dir) all_metrics.update(metrics) if training_args.do_predict: logger.info("*** Predict ***") test_output = trainer.predict( test_dataset=test_dataset, metric_key_prefix="test", max_length=data_args.val_max_target_length, num_beams=data_args.eval_beams, ) metrics = test_output.metrics metrics["test_n_objs"] = data_args.n_test if trainer.is_world_process_zero(): metrics["test_loss"] = round(metrics["test_loss"], 4) handle_metrics("test", metrics, training_args.output_dir) all_metrics.update(metrics) if training_args.predict_with_generate: test_preds = tokenizer.batch_decode( test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True) test_preds = lmap(str.strip, test_preds) write_txt_file( test_preds, os.path.join(training_args.output_dir, "test_generations.txt")) if trainer.is_world_process_zero(): save_json(all_metrics, os.path.join(training_args.output_dir, "all_results.json")) return all_metrics
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) if (os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(training_args, p, None): assert hasattr( config, p ), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(config, p, getattr(training_args, p)) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) model = AutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, from_tf=".ckpt" in model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, ) # use task specific params use_task_specific_params(model, data_args.task) # set num_beams for evaluation if data_args.eval_beams is None: data_args.eval_beams = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance( tokenizer, MBartTokenizer): assert (data_args.tgt_lang is not None and data_args.src_lang is not None), "mBart requires --tgt_lang and --src_lang" model.config.decoder_start_token_id = tokenizer.lang_code_to_id[ data_args.tgt_lang] if model_args.freeze_embeds: freeze_embeds(model) if model_args.freeze_encoder: freeze_params(model.get_encoder()) assert_all_frozen(model.get_encoder()) dataset_class = Seq2SeqDataset if hasattr( tokenizer, "prepare_seq2seq_batch") else LegacySeq2SeqDataset # Get datasets train_dataset = (dataset_class( tokenizer, type_path="train", data_dir=data_args.data_dir, n_obs=data_args.n_train, max_target_length=data_args.max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_train else None) eval_dataset = (dataset_class( tokenizer, type_path="val", data_dir=data_args.data_dir, n_obs=data_args.n_val, max_target_length=data_args.val_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None) test_dataset = (dataset_class( tokenizer, type_path="test", data_dir=data_args.data_dir, n_obs=data_args.n_test, max_target_length=data_args.test_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_predict else None) # Initialize our Trainer compute_metrics_fn = (build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None) trainer = Seq2SeqTrainer( model=model, config=config, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=Seq2SeqDataCollator(tokenizer, data_args, training_args.tpu_num_cores), compute_metrics=compute_metrics_fn, data_args=data_args, ) # Training if training_args.do_train: trainer.train(model_path=model_args.model_name_or_path if os.path. isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): trainer.state.save_to_json( os.path.join(training_args.output_dir, "trainer_state.json")) tokenizer.save_pretrained(training_args.output_dir) # Evaluation eval_results = {} if training_args.do_eval: logger.info("*** Evaluate ***") result = trainer.evaluate() if trainer.is_world_process_zero(): logger.info("***** Eval results *****") for key, value in result.items(): logger.info(" %s = %s", key, value) save_json( result, os.path.join(training_args.output_dir, "eval_results.json")) eval_results.update(result) if training_args.do_predict: logging.info("*** Test ***") test_output = trainer.predict(test_dataset=test_dataset) test_metrics = { k.replace("eval", "test"): v for k, v in test_output.metrics.items() } if trainer.is_world_process_zero(): logger.info("***** Test results *****") for key, value in test_metrics.items(): logger.info(" %s = %s", key, value) save_json( test_metrics, os.path.join(training_args.output_dir, "test_results.json")) eval_results.update(test_metrics) if training_args.predict_with_generate: test_preds = tokenizer.batch_decode( test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True) test_preds = lmap(str.strip, test_preds) write_txt_file( test_preds, os.path.join(training_args.output_dir, "test_generations.txt")) if trainer.is_world_process_zero(): save_json(eval_results, "all_results.json") return eval_results
def main(): parser = MyArgumentParser((InferenceArguments, )) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. (args, ) = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: (args, ) = parser.parse_args_into_dataclasses() params = dict( pretrained_model_name_or_path=args.model_name_or_path, cache_dir=args.cache_dir, ) config = AutoConfig.from_pretrained(**params) tokenizer = AutoTokenizer.from_pretrained(**params) model = AutoModelForSeq2SeqLM.from_pretrained(config=config, **params) if args.model_parameters: print("====== MODEL PARAMETER LOADING... ======\n" f" {args.model_parameters}") model.load_state_dict(torch.load(args.model_parameters)) max_length = args.test_max_target_length # set num_beams for evaluation num_beams = args.num_beams if args.num_beams else model.config.num_beams test_dataset = Seq2SeqDataset( tokenizer=tokenizer, type_path='test', data_dir=args.data_dir, max_target_length=args.test_max_target_length, max_source_length=args.max_source_length, ) test_sampler = SequentialSampler(test_dataset) data_collator = Seq2SeqDataCollator(tokenizer, args) test_dataloader = DataLoader( test_dataset, sampler=test_sampler, batch_size=args.per_device_test_batch_size, collate_fn=data_collator, drop_last=False, ) # prediction_loop description = "Prediction" batch_size = test_dataloader.batch_size num_examples = len(test_dataloader.dataset) print(f"***** Running {description} *****") print(f" Num examples = {num_examples}") print(f" Batch size = {batch_size}") device = "cuda" if torch.cuda.is_available() else "cpu" model = model.to(device) res = [] for step, inputs in enumerate(test_dataloader): # prediction_step, generative based has_labels = "labels" in inputs # False # _prepare_inputs # 1. device로 보내기 # 2. memory에 _past 올리기 for k, v in inputs.items(): if isinstance(v, torch.Tensor): inputs[k] = v.to(device) gen_kwargs = {"max_length": max_length, "num_beams": num_beams} generated_tokens = model.generate( inputs['input_ids'], attention_mask=inputs['attention_mask'], **gen_kwargs, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: # If PAD token is not defined at least EOS token has to be defined padded_tensor = tokenizer.pad_token_id * torch.ones( (generated_tokens.shape[0], gen_kwargs["max_length"]), dtype=generated_tokens.dtype, device=generated_tokens.device, ) padded_tensor[:, :generated_tokens.shape[-1]] = generated_tokens generated_tokens = padded_tensor loss = None labels = None res.extend(list(generated_tokens)) submit(args, tokenizer, res) print("Finished!")