# configure args from opts import * from opts import dataset_mean, dataset_std # set them in opts modelFns = { 'unet': Models.VanillaUnet.VanillaUnet, 'segnet': Models.Segnet.Segnet, 'vgg_unet': Models.VGGUnet.VGGUnet, 'vgg_unet2': Models.VGGUnet.VGGUnet2, 'fcn8': Models.FCN8.FCN8, 'fcn32': Models.FCN32.FCN32, 'crfunet': Models.CRFunet.CRFunet } # save and compute metrics vis = VIS(save_path=opt.checkpoint_path) # configuration session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) ''' Users define data loader (with train and test) ''' img_shape = [opt.imSize, opt.imSize] label_classes = vis.palette_info() train_generator, train_samples = dataLoader(opt.data_path + '/train/', opt.batch_size, img_shape, label_classes, mean=dataset_mean, std=dataset_std) test_generator, test_samples = dataLoader(opt.data_path + '/val/',
np.random.seed(SEED) import tensorflow as tf tf.set_random_seed(SEED) import os, shutil, glob from skimage import transform, io from model import UNet from utils import VIS, mean_IU # configure args from opts import * import cv2 # save and compute metrics vis = VIS(save_path=opt.checkpoint_path) print('num_class = %d' % opt.num_class) # configuration session config = tf.ConfigProto( device_count={'GPU': 0} ) # config.gpu_options.allow_growth = True sess = tf.Session(config=config) img_shape = [280, 500] # Resized to be the same. # define input holders train_list = glob.glob(opt.data_path + '/train/img/0/*.png') train_num = len(train_list) test_list = glob.glob(opt.data_path + '/val/img/0/*.png')
import tensorflow as tf import os, sys import numpy as np import scipy.misc as misc from model import UNet from utils import dice_coef, dice_coef_loss from loader import dataLoader, deprocess, dataLoaderNp from PIL import Image from utils import VIS, mean_IU # configure args from opts import * from opts import dataset_mean, dataset_std # set them in opts vis = VIS(save_path=opt.load_from_checkpoint, is_train=False) # configuration session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) # define data loader img_shape = [233, 369] #img_shape = [opt.imSize, opt.imSize] test_generator, test_samples = dataLoaderNp(opt.data_path, 1, train_mode=False) # define model, the last dimension is the channel label = tf.placeholder(tf.int32, shape=[None] + img_shape) with tf.name_scope('unet'): model = UNet().create_model(img_shape=img_shape + [3], num_class=opt.num_class) img = model.input
# configure args from opts import * from opts import dataset_mean, dataset_std # set them in opts modelFns = { 'unet': Models.VanillaUnet.VanillaUnet, 'segnet': Models.Segnet.Segnet, 'vgg_unet': Models.VGGUnet.VGGUnet, 'vgg_unet2': Models.VGGUnet.VGGUnet2, 'fcn8': Models.FCN8.FCN8, 'fcn32': Models.FCN32.FCN32, 'crfunet': Models.CRFunet.CRFunet } vis = VIS(save_path=opt.load_from_checkpoint) # configuration session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) # define data loader img_shape = [opt.imSize, opt.imSize] label_classes = vis.palette_info() print('++++++++++++++++++++++++class') print(label_classes) test_generator, test_samples = dataLoader(opt.data_path + '/val/', 1, img_shape, label_classes,
from keras import backend as K import tensorflow as tf import os, sys import numpy as np import scipy.misc as misc from model import UNet from utils import dice_coef, dice_coef_loss from loader import dataLoader, folderLoader from PIL import Image from utils import VIS, mean_IU # configure args from opts import * # assert(opt.load_from_checkpoint != '') # assert(opt.batch_size == 1) vis = VIS(save_path=opt.load_from_checkpoint) # configuration session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) K.set_session(sess) K.set_learning_phase(0) # define data loader test_generator, test_samples = folderLoader(opt.data_path) # define model, the last dimension is the channel img_shape = (opt.imSize, opt.imSize, 3) # img = tf.placeholder(tf.float32, shape=img_shape) label = tf.placeholder(tf.int32, shape=(None, opt.imSize, opt.imSize))
import os, sys import numpy as np import scipy.misc as misc from model import UNet from utils import dice_coef, dice_coef_loss from loader import dataLoader, folderLoader from PIL import Image from utils import VIS, mean_IU import cv2 # configure args from opts import * # assert(opt.load_from_checkpoint != '') # assert(opt.batch_size == 1) from matplotlib import pyplot as plt #vis = VIS(save_path=opt.load_from_checkpoint) vis = VIS(save_path='./trainlog') # configuration session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) # define data loader img_shape = [opt.imHeight, opt.imWidth] test_generator, test_samples = folderLoader(opt.data_path, imSize=img_shape) # define model, the last dimension is the channel label = tf.placeholder(tf.int32, shape=[None] + img_shape) with tf.name_scope('unet'): model = UNet().create_model(img_shape=img_shape + [3], num_class=opt.num_class) img = model.input