print_args(args) source_root = os.path.join(args.data_root, args.source) source_label = os.path.join(args.data_root, args.source + "_list.txt") target_root = os.path.join(args.data_root, args.target) target_label = os.path.join(args.data_root, args.target + "6_list.txt") train_transform = transforms.Compose([ transforms.Scale((256, 256)), transforms.CenterCrop((224, 224)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) source_set = VisDAImage(source_root, source_label, train_transform) target_set = VisDAImage(target_root, target_label, train_transform) assert len(source_set) == 152397 assert len(target_set) == 28978 source_loader = torch.utils.data.DataLoader(source_set, batch_size=args.batch_size, shuffle=args.shuffle, num_workers=args.num_workers) target_loader = torch.utils.data.DataLoader(target_set, batch_size=args.batch_size, shuffle=args.shuffle, num_workers=args.num_workers) if args.model == 'resnet101':
result = open( os.path.join(args.result, "Visda_IAFN_" + args.post + '.' + args.repeat + "_score.txt"), "a") t_root = os.path.join(args.data_root, args.target) t_label = os.path.join(args.data_root, args.target + "6_list.txt") data_transform = transforms.Compose([ transforms.Scale((256, 256)), transforms.CenterCrop((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) t_set = VisDAImage(t_root, t_label, data_transform) assert len(t_set) == 28978 t_loader = torch.utils.data.DataLoader(t_set, batch_size=args.batch_size, shuffle=args.shuffle, num_workers=args.num_workers) netG = ResBase50().cuda() netF = ResClassifier(class_num=args.class_num).cuda() netG.eval() netF.eval() for epoch in range(args.epoch / 2, args.epoch + 1): if epoch % 10 != 0: continue