data_rating = data_rating_train.append(data_rating_test) print('Range of userId is [{}, {}]'.format(data_rating.userId.min(), data_rating.userId.max())) print('Range of itemId is [{}, {}]'.format(data_rating.itemId.min(), data_rating.itemId.max())) # Read the grouping information if args.pretrain_grouping: data_grouping = pd.read_csv(args.data_grouping, sep=",", header=0, names=['friendId', 'tagId', 'score'],engine='python') config['num_friends_pretrain'] = int(data_grouping.friendId.max() + 1) config['num_items_pretrain'] = int(data_grouping.tagId.max() + 1) del data_grouping print ("group data reading finished!") # Process the tweet vocab = Word() tweet = vocab.load_tweets(data_tweet, args.max_seq_len) pad_word = vocab.pad tweet_pad = np.full(shape=(1, args.max_seq_len), fill_value=pad_word, dtype=np.int64) tweet = np.vstack([tweet, tweet_pad]) # config config['num_users'], config['num_items'] = int(data_rating.userId.max() + 1), int(data_rating.itemId.max() + 1) config['user_friends'],config['user_tweets'],config['num_friends'] = load_friends_tweets(args.data_profile) args.tweet = tweet config['args'] = args config['vocab'] = vocab # Specify the exact model model = sys.argv[1] if len(sys.argv) == 2 else "gmf" if args.model.lower() == "gmf": config['group'] = False
print('Range of userId is [{}, {}]'.format(data_rating.userId.min(), data_rating.userId.max())) print('Range of itemId is [{}, {}]'.format(data_rating.itemId.min(), data_rating.itemId.max())) print('Range of tweetId is [{}, {}]'.format(data_rating.tweetId.min(), data_rating.tweetId.max())) # Read the grouping information if args.pretrain_grouping: data_grouping = pd.read_csv(args.data_grouping, sep=",", header=0, names=['friendId', 'tagId', 'score'],engine='python') config['num_friends_pretrain'] = int(data_grouping.friendId.max() + 1) config['num_items_pretrain'] = int(data_grouping.tagId.max() + 1) del data_grouping args.item_num = int(data_rating.itemId.max() + 1) # Process the tweet vocab = Word() tweet = vocab.load_tweets(data_tweet, max_len=200) # Read the grouping information data_grouping = pd.read_csv(args.data_grouping, sep=",", header=0, names=['friendId', 'tagId', 'score'],engine='python') config['num_friends_pretrain'] = int(data_grouping.friendId.max() + 1) config['num_items_pretrain'] = int(data_grouping.tagId.max() + 1) del data_grouping # config config['num_users'], config['num_items'] = int(data_rating.userId.max() + 1), int(data_rating.itemId.max() + 1) config['user_friends'], config['num_friends'] = load_friends(args.data_friends) args.tweet = tweet config['args'] = args config['vocab'] = vocab # Specify the exact model