print( param[im] ) # parameter in form tensor([2.5508, 0.0000, 0.0000, 0.0000, 0.0000, 5.0000]) image2show = image[im] # indexing random one image print(image2show.size()) #torch.Size([3, 512, 512]) plt.imshow((image2show * 0.5 + 0.5).numpy().transpose(1, 2, 0)) plt.show() break # break here just to show 1 batch of data # ------------------------------------------------------------------ # for noise in np.arange(0, 1, 0.1): noise = 0.0 model = resnet50(cifar=True) #use pretrained on imagenet if cifar is true model = model.to(device) # transfer the neural net onto the GPU criterion = nn.MSELoss( ) # define the loss (MSE, Crossentropy, Binarycrossentropy) # ------------------------------------------------------------------ all_Train_losses, all_Test_losses = train(model, train_dataloader, test_dataloader, n_epochs, criterion, date4File, cubeSetName, batch_size, fileExtension, device, noise) # ------------------------------------------------------------------ torch.save( model.state_dict(),
# # # print(image[2]) # print(image.size(), param.size()) #torch.Size([batch, 3, 512, 512]) torch.Size([batch, 6]) # im =2 # print(param[im]) # parameter in form tensor([2.5508, 0.0000, 0.0000, 0.0000, 0.0000, 5.0000]) # # image2show = image[im] # indexing random one image # print(image2show.size()) #torch.Size([3, 512, 512]) # plt.imshow((image2show * 0.5 + 0.5).numpy().transpose(1, 2, 0)) # plt.show() # break # break here just to show 1 batch of data # ------------------------------------------------------------------ model = resnet50( cifar=False, modelName=modelName) #train with the saved model from the training script model = model.to(device) # transfer the neural net onto the GPU criterion = nn.MSELoss() # ------------------------------------------------------------------ # test the model parameters, predicted_params, test_losses, al, bl, gl, xl, yl, zl = testRenderResnet( model, test_dataloader, criterion, file_name_extension, device, obj_name) # ------------------------------------------------------------------ # display computed parameter against ground truth obj_name = 'rubik_color'
# plt.show() # # image2show = sil[im] # indexing random one image # print(image2show.size()) # torch.Size([3, 512, 512]) # image2show = image2show.numpy() # plt.imshow(image2show, cmap='gray') # plt.show() # # break # break here just to show 1 batch of data # ------------------------------------------------------------------ # for noise in np.arange(0, 1, 0.1): noise = 0.0 # model = resnet50(cifar=False, modelName=modelName) #train with the saved model from the training script model = resnet50(cifar=True) #train with the pretrained parameter from cifar database # model = resnet50_multCPU(cifar=True) model = model.to(device) # transfer the neural net onto the GPU criterion = nn.MSELoss() #nn.BCELoss() #nn.CrossEntropyLoss() define the loss (MSE, Crossentropy, Binarycrossentropy) # # ------------------------------------------------------------------ train_losses, all_Test_losses = train_render(model, train_dataloader, test_dataloader, n_epochs, criterion, date4File, cubeSetName, batch_size, fileExtension, device, obj_name, noise) # ------------------------------------------------------------------ torch.save(model.state_dict(), 'models/{}_FinalModel_train_{}_{}batchs_{}epochs_Noise{}_{}_RenderRegr.pth'.format(date4File, cubeSetName, str(batch_size), str(n_epochs), noise*100,fileExtension)) print('parameters saved')