예제 #1
0
 def read_file_data(self, file_path):
     with open(file_path, "r") as f:
         file_lines = f.readlines()
     if any(";" in s for s in file_lines):
         timed_vals = []
         # format the file according to val;time
         self.is_timed = True
         for line in file_lines:
             line = line.replace("\n", "")
             vals = line.strip().split(";")
             val = vals[0]
             val = float(val.replace(",", "."))
             time = vals[1]
             time = float(time.replace(",", "."))
             timed_vals.append([time, val])
         timed_vals.sort(key=lambda x: x[0])
         timed_vals = TimeSeries.expand_and_resample(
             timed_vals, self.delta_time)
         return timed_vals
     else:
         vals = []
         for line in file_lines:
             line = line.replace("\n", "")
             val = float(line.replace(",", "."))
             vals.append(val)
         return vals
예제 #2
0
 def get_data(self, timestamp):
     if len(self.base_data) == 0:
         self.fetch_base_data()
     if len(self.base_data) > 0:
         data, start_time = self.filter_next_horizon_hrs(timestamp)
         data = self.append_timestamp(data, start_time)
         data = TimeSeries.expand_and_resample(data, self.dT_in_seconds, False)
         return data
    def add_formated_data(self, json_data):
        doc = None
        try:
            doc = senml.SenMLDocument.from_json(json_data)
        except Exception as e:
            pass
        if not doc:
            try:
                meas = senml.SenMLMeasurement.from_json(json_data)
                doc = senml.SenMLDocument([meas])
            except Exception as e:
                pass

        if doc:
            base_data = doc.base
            bn, bu = None, None
            if base_data:
                bn = base_data.name
                bu = base_data.unit
            data = {}
            raw_data = []
            doc.measurements = sorted(doc.measurements, key=lambda x: x.time)
            if len(doc.measurements) > 0:
                for meas in doc.measurements:
                    n = meas.name
                    u = meas.unit
                    v = meas.value
                    t = meas.time
                    t = self.time_conversion(t)
                    if not u:
                        u = bu
                    # dont check bn
                    if not n:
                        n = self.generic_name
                    try:
                        processed_value = self.preprocess_data(bn, n, v, u)
                        if processed_value is not None and processed_value is not {}:
                            raw_data.append([t, processed_value])
                    except Exception as e:
                        self.logger.error("error " + str(e) + "  n = " + str(n))
                #self.logger.debug("raw data: " + str(raw_data))
                raw_data = TimeSeries.expand_and_resample(raw_data, self.dT, True)
                if len(raw_data) > 0:
                    self.length = len(raw_data)
                    bucket = self.time_to_bucket(raw_data[0][0])
                    for row in raw_data:
                        bucket_key = str(self.current_day_index) + "_" + str(bucket)
                        bucket += 1
                        if bucket >= self.total_steps_in_day:
                            bucket = 0
                            self.current_day_index += 1
                            if self.current_day_index >= self.number_of_bucket_days:
                                self.current_day_index = 0
                        data[bucket_key] = row[1]
            return data
        return {}
 def expand_and_resample_into_blocks(self, raw_data, model_data_dT, input_size, output_size):
     if len(raw_data) > 0:
         min_length = input_size + output_size
         blocks = self.break_series_into_countinous_blocks(raw_data, model_data_dT, min_length)
         logger.info("num blocks = " + str(len(blocks)))
         resampled_blocks = []
         block_has_min_length = []
         merged = False
         for block in blocks:
             resampled_block = TimeSeries.expand_and_resample(block, model_data_dT)
             if len(resampled_block) > 0:
                 resampled_blocks.append(resampled_block)
                 logger.info("block size = " + str(len(resampled_block)))
                 if len(resampled_block) >= min_length:
                     block_has_min_length.append(True)
                 else:
                     block_has_min_length.append(False)
         if len(block_has_min_length) > 0 and not any(block_has_min_length):
             logger.info("merging block because insufficient data")
             new_block = []
             end_time = resampled_blocks[-1][-1][0]
             # TODO : check logic
             for i in reversed(range(len(resampled_blocks))):
                 rsb = resampled_blocks[i]
                 start_time = rsb[0][0]
                 if end_time - start_time < min_length * model_data_dT:
                     rsb.extend(new_block)
                     new_block = rsb
                     merged = True
                 else:
                     rsb.extend(new_block)
                     new_block = rsb
                     merged = True
                     break
             if merged:
                 new_block = TimeSeries.expand_and_resample(new_block, model_data_dT)
                 logger.info("length of merged blocks after expand = " + str(len(new_block)))
             resampled_blocks = [new_block]
         return resampled_blocks, merged
     else:
         return [], False
예제 #5
0
 def read_raw_data(self, start_time):
     start_of_day = self.get_start_of_the_day(start_time)
     end_time = start_time + self.dT_in_seconds * self.horizon_in_steps
     data = self.raw_data.get_raw_data_by_time_influx(
         self.influxDB, self.topic_name, start_time, end_time, self.id)
     data = TimeSeries.expand_and_resample(data, self.dT_in_seconds)
     #data = data[:-1]
     data = data[:self.horizon_in_steps]
     new_data = {}
     for t, v in data:
         bucket = self.time_to_bucket(t, start_of_day)
         new_data[bucket] = v
     return new_data
    def postprocess_data(self, prediction, startTimestamp, delta, horizon_steps, Xmax, Xmin):
        data = prediction.reshape(-1, 1)
        # data = scaler.inverse_transform(data)

        data = (data - self.min) / (self.max - self.min)
        data = data * (Xmax - Xmin) + Xmin

        data = data.reshape(-1)
        startTime = datetime.datetime.fromtimestamp(startTimestamp)
        result = []
        for pred in data:
            result.append([startTime.timestamp(), pred])
            startTime += datetime.timedelta(seconds=60)
        result = TimeSeries.expand_and_resample_reversed(result, delta, False)
        result = result[:horizon_steps]
        logger.debug("pred out start val = " + str(result[0]))
        output = {}
        for t, v in result:
            output[datetime.datetime.fromtimestamp(t)] = v
        return output
예제 #7
0
 def run(self):
     self.logger.debug("Running pv prediction")
     while not self.stopRequest.is_set():
         if not self.redisDB.get_bool(Constants.get_data_flow_key(self.id)):
             time.sleep(30)
             continue
         self.logger.debug("pv prediction data flow true")
         try:
             start = time.time()
             data = self.raw_data.get_raw_data()
             self.logger.debug("pv data in run is " + str(data))
             if len(data) > 0:
                 value = data[0][1]
                 current_timestamp = data[0][0]
                 self.logger.debug("pv received timestamp " +
                                   str(current_timestamp) + " val " +
                                   str(value))
                 base_data = self.radiation.get_data(current_timestamp)
                 shifted_base_data = TimeSeries.shift_by_timestamp(
                     base_data, current_timestamp, self.dT_in_seconds)
                 self.logger.debug("base_data = " + str(shifted_base_data))
                 adjusted_data = self.adjust_data(shifted_base_data, value,
                                                  current_timestamp)
                 predicted_data = self.extract_horizon_data(adjusted_data)
                 self.logger.debug("pv predicted timestamp " +
                                   str(predicted_data[0][0]))
                 if predicted_data is not None and len(predicted_data) > 0:
                     self.q.put(predicted_data)
                     self.old_predictions[int(
                         predicted_data[0][0])] = predicted_data
             start = self.control_frequency - (time.time() - start)
             if start > 0:
                 time.sleep(start)
         except Exception as e:
             self.logger.error(
                 str(self.generic_name) + " prediction thread exception " +
                 str(e))
    def run(self):
        while not self.stopRequest.is_set():
            if not self.redisDB.get_bool(Constants.get_data_flow_key(self.id)):
                time.sleep(30)
                continue
            try:
                data = self.raw_data.get_raw_data()
                self.logger.debug("len data = " + str(len(data)))
                data = TimeSeries.expand_and_resample(data, 60)
                self.logger.debug("len resample data = " + str(len(data)))
                true_data = data
                if len(data) > 0:
                    data = self.processingData.append_mock_data(data, self.input_size, 60)
                    self.logger.debug("len appended data = " + str(len(data)))
                if len(data) > self.input_size:
                    st = time.time()
                    test_predictions = []
                    model, graph = self.models.get_model(self.id + "_" + self.topic_name, True, self.redisDB)
                    predicted_flag = False
                    if model is not None and graph is not None:
                        if self.type == "load":
                            Xtest, Xmax, Xmin, latest_timestamp = self.processingData.preprocess_data_predict_load(data,
                                                                                                              self.input_size)
                        else:
                            Xtest, Xmax, Xmin, latest_timestamp = self.processingData.preprocess_data_predict_pv(data,
                                                                                                              self.input_size,
                                                                                                              self.input_size_hist)
                        try:
                            self.logger.debug(
                                "model present, so predicting data for " + str(self.id) + " " + str(self.topic_name))
                            from prediction.predictModel import PredictModel
                            predictModel = PredictModel(self.stop_request_status)
                            prediction_time = time.time()
                            test_predictions = predictModel.predict_next_horizon(model, Xtest, self.batch_size, graph, self.type)
                            self.logger.debug("Prediction successful for " + str(self.id) + " " + str(self.topic_name) +
                                              " which took "+str(time.time()-prediction_time) + " seconds")
                            predicted_flag = True
                        except Exception as e:
                            predicted_flag = False
                            self.models.remove_saved_model()
                            self.logger.error("exception when prediction using model : " + str(e))

                        if predicted_flag:
                            test_predictions = self.processingData.postprocess_data(test_predictions, latest_timestamp,
                                                                                    self.dT_in_seconds,
                                                                                    self.horizon_in_steps, Xmax, Xmin)
                            self.logger.debug("predictions values Xmax "+str(Xmax)+" Xmin "+str(Xmin))
                            self.q.put(test_predictions)
                            self.old_predictions.append(test_predictions)

                    if not predicted_flag:
                        self.logger.info("prediction model is none, extending the known values")
                        data = TimeSeries.expand_and_resample(true_data, self.dT_in_seconds)
                        test_predictions = self.processingData.get_regression_values(data, self.input_size,
                                                                                     self.output_size + 1,
                                                                                     self.dT_in_seconds)
                        self.q.put(test_predictions)

                    self.logger.debug(str(self.topic_name) + " predictions " + str(len(test_predictions)))
                    st = time.time() - st
                    ss = self.control_frequency - st
                    if ss < 0:
                        ss = 0
                    time.sleep(ss)
                else:
                    time.sleep(1)
            except Exception as e:
                self.logger.error(str(self.topic_name) + " prediction thread exception " + str(e))