def display_info(ibs, invindex, annots_df): ################ from ibeis.dev import dbinfo print(ibs.get_infostr()) dbinfo.get_dbinfo(ibs, verbose=True) ################ print('Inverted Index Stats: vectors per word') print(utool.stats_str(map(len, invindex.wx2_idxs.values()))) ################ #qfx2_vec = annots_df['vecs'][1] centroids = invindex.words num_pca_dims = 3 # 3 whiten = False kwd = dict( num_pca_dims=num_pca_dims, whiten=whiten, ) #clustertool.rrr() def makeplot_(fnum, prefix, data, labels='centroids', centroids=centroids): return clustertool.plot_centroids(data, centroids, labels=labels, fnum=fnum, prefix=prefix + '\n', **kwd) makeplot_(1, 'centroid vecs', centroids)
def plot_seperability(hs, qcx_list, fnum=1): print('[dev] plot_seperability(fnum=%r)' % fnum) qcx2_res = get_qcx2_res(hs, qcx_list) qcx2_separability = get_seperatbility(hs, qcx2_res) sep_score_list = qcx2_separability.values() df2.figure(fnum=fnum, doclf=True, docla=True) print('[dev] seperability stats: ' + utool.stats_str(sep_score_list)) sorted_sepscores = sorted(sep_score_list) df2.plot(sorted_sepscores, color=df2.DEEP_PINK, label='seperation score', yscale=YSCALE) df2.set_xlabel('true chipmatch index (%d)' % len(sep_score_list)) df2.set_logyscale_from_data(sorted_sepscores) df2.dark_background() rowid = qcx2_res.itervalues().next().rowid df2.set_figtitle('seperability\n' + rowid) df2.legend() fnum += 1 return fnum
def display_info(ibs, invindex, annots_df): ################ from ibeis.dev import dbinfo print(ibs.get_infostr()) dbinfo.get_dbinfo(ibs, verbose=True) ################ print('Inverted Index Stats: vectors per word') print(utool.stats_str(map(len, invindex.wx2_idxs.values()))) ################ #qfx2_vec = annots_df['vecs'][1] centroids = invindex.words num_pca_dims = 3 # 3 whiten = False kwd = dict(num_pca_dims=num_pca_dims, whiten=whiten,) #clustertool.rrr() def makeplot_(fnum, prefix, data, labels='centroids', centroids=centroids): return clustertool.plot_centroids(data, centroids, labels=labels, fnum=fnum, prefix=prefix + '\n', **kwd) makeplot_(1, 'centroid vecs', centroids)
def plot_scores2(hs, qcx_list, fnum=1): print('[dev] plot_scores(fnum=%r)' % fnum) qcx2_res = get_qcx2_res(hs, qcx_list) all_score_list = [] gtscore_ys = [] gtscore_xs = [] gtscore_ranks = [] EXCLUDE_ZEROS = False N = 1 # Append all scores to a giant list for res in qcx2_res.itervalues(): cx2_score = res.cx2_score # Get gt scores first #gt_cxs = hs.get_other_indexed_cxs(res.qcx) gt_cxs = np.array(res.topN_cxs(hs, N=N, only_gt=True)) gt_ys = cx2_score[gt_cxs] if EXCLUDE_ZEROS: nonzero_cxs = np.where(cx2_score != 0)[0] gt_cxs = gt_cxs[gt_ys != 0] gt_ranks = res.get_gt_ranks(gt_cxs) gt_cxs = np.array(utool.list_index(nonzero_cxs, gt_cxs)) gt_ys = gt_ys[gt_ys != 0] score_list = cx2_score[nonzero_cxs].tolist() else: score_list = cx2_score.tolist() gt_ranks = res.get_gt_ranks(gt_cxs) gtscore_ys.extend(gt_ys) gtscore_xs.extend(gt_cxs + len(all_score_list)) gtscore_ranks.extend(gt_ranks) # Append all scores all_score_list.extend(score_list) all_score_list = np.array(all_score_list) gtscore_ranks = np.array(gtscore_ranks) gtscore_ys = np.array(gtscore_ys) # Sort all chipmatch scores allx_sorted = all_score_list.argsort() # mapping from sortedallx to allx allscores_sorted = all_score_list[allx_sorted] # Change the groundtruth positions to correspond to sorted cmatch scores # Find position of gtscore_xs in allx_sorted gtscore_sortxs = utool.list_index(allx_sorted, gtscore_xs) gtscore_sortxs = np.array(gtscore_sortxs) # Draw and info rank_bounds = [ (0, 1), (1, 5), (5, None) ] rank_colors = [ df2.TRUE_GREEN, df2.UNKNOWN_PURP, df2.FALSE_RED ] print('[dev] matching chipscore stats: ' + utool.stats_str(all_score_list)) df2.figure(fnum=fnum, doclf=True, docla=True) # Finds the knee df2.plot(allscores_sorted, color=df2.ORANGE, label='all scores') # get positions which are within rank bounds for count, ((low, high), rankX_color) in reversed(list(enumerate(zip(rank_bounds, rank_colors)))): rankX_flag_low = gtscore_ranks >= low if high is not None: rankX_flag_high = gtscore_ranks < high rankX_flag = np.logical_and(rankX_flag_low, rankX_flag_high) else: rankX_flag = rankX_flag_low rankX_allgtx = np.where(rankX_flag)[0] rankX_gtxs = gtscore_sortxs[rankX_allgtx] rankX_gtys = gtscore_ys[rankX_allgtx] rankX_label = '%d <= gt rank' % low if high is not None: rankX_label += ' < %d' % high if len(rankX_gtxs) > 0: df2.plot(rankX_gtxs, rankX_gtys, 'o', color=rankX_color, label=rankX_label) rowid = qcx2_res.itervalues().next().rowid df2.set_logyscale_from_data(allscores_sorted) df2.set_xlabel('chipmatch index') df2.dark_background() df2.set_figtitle('matching scores\n' + rowid) df2.legend(loc='upper left') #xmin = 0 #xmax = utool.order_of_magnitude_ceil(len(allscores_sorted)) #print('len_ = %r' % (len(allscores_sorted),)) #print('xmin = %r' % (xmin,)) #print('xmax = %r' % (xmax,)) #df2.gca().set_xlim(xmin, xmax) df2.update() #utool.embed() # Second Plot #data = sorted(zip(gtscore_sortxs, gtscore_ys, gtscore_ranks)) #gtxs = [x for (x, y, z) in data] #gtys = [y for (x, y, z) in data] #gtrs = [z for (x, y, z) in data] #nongtxs = np.setdiff1d(np.arange(gtxs[0], gtxs[-1]), gtxs) #min_ = min(gtxs) #max_ = len(allscores_sorted) #len_ = max_ - min_ #normsum = 0 #ratsum = 0 #gtxs = np.array(gtxs) #nongtxs = np.array(nongtxs) #for ix in xrange(min_, max_): #nongtxs_ = nongtxs[nongtxs >= ix] #gtxs_ = gtxs[gtxs >= ix] #numer = allscores_sorted[gtxs_].sum() #denom = allscores_sorted[nongtxs_].sum() #ratio = (1 + numer) / (denom + 1) #total_support = (len(gtxs_) + len(nongtxs_)) #normrat = ratio / total_support #ratsum += ratio #normsum += normrat #print(total_support) #print(ratsum / len_) #print(normsum / len_) #print(ratsum / allscores_sorted[min_:max_].sum()) #print(normsum / allscores_sorted[min_:max_].sum()) #index_gap = np.diff(gtxs) #score_gap = np.diff(gtys) #badness = (index_gap - 1) * score_gap #np.arange(len(gtxs)) fnum += 1 return fnum
def plot_scores(hs, qcx_list, fnum=1): print('[dev] plot_scores(fnum=%r)' % fnum) topN_gt = 1 topN_ranks = 3 qcx2_res = get_qcx2_res(hs, qcx_list) data_scores = [] # matching scores data_qpairs = [] # query info (qcx, cx) data_gtranks = [] # query info (gtrank) # Append all scores to a giant list for res in qcx2_res.itervalues(): # Get gt scores first qcx = res.qcx top_cxs = np.array(res.topN_cxs(hs, N=topN_ranks, only_gt=False)) gt_cxs = np.array(res.topN_cxs(hs, N=topN_gt, only_gt=True)) top_scores = res.cx2_score[top_cxs] np.intersect1d(top_cxs, gt_cxs) # list of ranks if score is ground truth otherwise -1 isgt_ranks = [tx if cx in set(gt_cxs) else -1 for (tx, cx) in enumerate(top_cxs)] qcx_pairs = [(hs.cx2_cid(qcx), hs.cx2_cid(cx)) for cx in top_cxs] # Append all scores data_scores.extend(top_scores.tolist()) data_qpairs.extend(qcx_pairs) data_gtranks.extend(isgt_ranks) data_scores = np.array(data_scores) data_qpairs = np.array(data_qpairs) data_gtranks = np.array(data_gtranks) data_sortx = data_scores.argsort() sorted_scores = data_scores[data_sortx] # Draw and info rank_colorbounds = [ ((-1, 0), df2.GRAY), ((0, 1), df2.TRUE_GREEN), ((1, 5), df2.UNKNOWN_PURP), ((5, None), df2.FALSE_RED), ] print('[dev] matching chipscore stats: ' + utool.stats_str(data_scores)) df2.figure(fnum=fnum, doclf=True, docla=True) # Finds the knee df2.plot(sorted_scores, color=df2.ORANGE, label='all scores') # Plot results with ranks within (low, high) bounds colorbounds_iter = reversed(list(enumerate(rank_colorbounds))) for count, ((low, high), rankX_color) in colorbounds_iter: datarank_flag = utool.inbounds(data_gtranks, low, high) rankX_xs = np.where(datarank_flag[data_sortx])[0] rankX_ys = sorted_scores[rankX_xs] if high is None: rankX_label = '%d <= gt rank' % low else: rankX_label = '%d <= gt rank < %d' % (low, high) if len(rankX_ys) > 0: df2.plot(rankX_xs, rankX_ys, 'o', color=rankX_color, label=rankX_label, alpha=.5) rowid = qcx2_res.itervalues().next().rowid df2.set_logyscale_from_data(data_scores) df2.set_xlabel('chipmatch index') df2.dark_background() df2.set_figtitle('matching scores\n' + rowid) df2.legend(loc='upper left') df2.iup() fnum += 1 score_table = np.vstack((data_scores, data_gtranks, data_qpairs.T)).T score_table = score_table[data_sortx[::-1]] column_labels = ['score', 'gtrank', 'qcid', 'cid'] header = 'score_table\nuid=%r' % rowid column_type = [float, int, int, int] csv_txt = utool.util_csv.numpy_to_csv(score_table, column_labels, header, column_type) print(csv_txt) #utool.embed() return fnum