class PointSource(object): """ combine name, skydir, model """ def __init__(self, skydir, name, model=None, free_parameters=True, leave_parameters=False): self.name = name self.skydir = skydir self.model = PowerLaw() if model is None else model #if not free_parameters: if not leave_parameters: for i in xrange(len(self.model.free)): self.model.free[i] = free_parameters self.duplicate = False def __str__(self): return '\n'.join([ '\n', '=' * 60, 'Name:\t\t%s' % (self.name), 'R.A. (J2000):\t%.5f' % (self.skydir.ra()), 'Dec. (J2000):\t%.5f' % (self.skydir.dec()), 'Model:\t\t%s' % (self.model.full_name()), '\t' + self.model.__str__(indent='\t'), ]) def copy(self): """ Create a deep copy of the point source. """ return PointSource(SkyDir(self.skydir.ra(), self.skydir.dec()), self.name, self.model.copy(), leave_parameters=True)
def get_default_sources(self): point_sources, diffuse_sources = [], [] model = PowerLaw(index=self.powerlaw_index, e0=np.sqrt(self.emin*self.emax)) model.set_flux(self.flux, emin=self.emin, emax=self.emax) ps = PointSource( name = 'source', model = model.copy(), skydir = self.roi_dir) point_sources.append(ps) if self.isotropic_bg: ds = get_sreekumar() diffuse_sources.append(ds) if self.nearby_source: ps = PointSource( name = 'nearby_source', model = model.copy(), skydir = SkyDir(self.roi_dir.ra(),self.roi_dir.dec()+3) ) point_sources.append(ps) return point_sources, diffuse_sources
def _calculate(self): self.results = dict() energies = np.logspace(np.log10(self.emin),np.log10(self.emax),self.npoints) if self.e0 is None: self.e0=np.sqrt(self.emin*self.emax) self.results['input_model'] = spectrum_to_dict(self.input_model) self.results['dnde'] = dnde = self.input_model(energies) self.pl_model = PowerLaw(e0=self.e0) self.pl_model.set_flux(self.input_model.i_flux(emin=self.emin,emax=self.emax), emin=self.emin,emax=self.emax) def residuals(args): norm,index=args self.pl_model['norm']=norm self.pl_model['index']=index dnde_pl = self.pl_model(energies) #return np.sum((np.log(dnde) - np.log(dnde_pl))**2) print (np.log10(dnde)-np.log10(dnde_pl))**2 return np.sum((np.log(dnde) - np.log(dnde_pl))**2) #return np.sum((dnde - dnde_pl)**2) best_norm,best_index=fmin(residuals,[self.pl_model['norm'],self.pl_model['index']]) self.pl_model['norm']=best_norm self.pl_model['index']=best_index self.results['pl_model'] = spectrum_to_dict(self.pl_model)
def __init__(self,skydir,name,model=None,free_parameters=True,leave_parameters=False): self.name = name self.skydir = skydir self.model = PowerLaw() if model is None else model #if not free_parameters: if not leave_parameters: for i in xrange(len(self.model.free)): self.model.free[i] = free_parameters self.duplicate = False
def estimate_flux(dnde, energy, emin, emax, e_weight): """ estimate the emin to emax flux for a source with prefactor dnde at the given energy. assuming the source has a spectral index of 2. Note, for our situation dnde has units [ph/cm^2/s/TeV] and energy has units [TeV], but the ouptut of the i_flux function is correct. If e_weight=0, the return has units [ph/cm^2/s]. If e_weight=1, the return has units [TeV/cm^2/s]. """ model = PowerLaw(index=2, norm=dnde, e0=energy) return model.i_flux(emin=emin, emax=emax, e_weight=e_weight)
def estimate_flux(dnde,energy,emin,emax, e_weight): """ estimate the emin to emax flux for a source with prefactor dnde at the given energy. assuming the source has a spectral index of 2. Note, for our situation dnde has units [ph/cm^2/s/TeV] and energy has units [TeV], but the ouptut of the i_flux function is correct. If e_weight=0, the return has units [ph/cm^2/s]. If e_weight=1, the return has units [TeV/cm^2/s]. """ model = PowerLaw(index=2, norm=dnde, e0=energy) return model.i_flux(emin=emin, emax=emax, e_weight=e_weight)
def get_sreekumar(diff_factor=1, free=(True, False)): # use Sreekumar-like defaults if diff_factor == 1: name = 'Sreekumar Isotropic' else: name = 'Sreekumar Isotropic x%s' % diff_factor free = np.asarray(free).copy() model = PowerLaw(index=2.1, free=free) model.set_flux(1.5e-5*diff_factor, emin=100, emax=np.inf) return DiffuseSource( name=name, diffuse_model=IsotropicConstant(), scaling_model=model)
def get_source(name, position, fit_emin, fit_emax, extended=False, sigma=None): """ build a souce. """ model=PowerLaw(index=2, e0=np.sqrt(fit_emin*fit_emax)) PWNRegion.limit_powerlaw(model) flux=PowerLaw(norm=1e-11, index=2, e0=1e3).i_flux(fit_emin,fit_emax) model.set_flux(flux,emin=fit_emin,emax=fit_emax) if extended and sigma != 0: if not isnum(sigma): raise Exception("sigma must be set. """) return ExtendedSource( name=name, model=model, spatial_model=Gaussian(sigma=sigma, center=position)) else: return PointSource( name=name, model=model, skydir=position)
def get_source(name, position, fit_emin, fit_emax, extended=False, sigma=None): """ build a souce. """ model = PowerLaw(index=2, e0=np.sqrt(fit_emin * fit_emax)) PWNRegion.limit_powerlaw(model) flux = PowerLaw(norm=1e-11, index=2, e0=1e3).i_flux(fit_emin, fit_emax) model.set_flux(flux, emin=fit_emin, emax=fit_emax) if extended and sigma != 0: if not isnum(sigma): raise Exception("sigma must be set. " "") return ExtendedSource(name=name, model=model, spatial_model=Gaussian(sigma=sigma, center=position)) else: return PointSource(name=name, model=model, skydir=position)
def __init__(self, **kwargs): """ Make the naming consistent with the PointSource object so that extended sources 'feel' like point sources. """ keyword_options.process(self, kwargs) if self.model == None: self.model = PowerLaw() if self.spatial_model == None: self.spatial_model = Disk() if not isinstance(self.spatial_model, SpatialModel): raise Exception( "The diffuse_model passed to an Extended Source must inherit from SpatialModel." ) super(ExtendedSource, self).__init__(diffuse_model=self.spatial_model, scaling_model=self.model, name=self.name) self.model.background = False
def build_roi(name, snrdata, latdata): snrdata=loaddict(snrdata) latdata=loaddict(latdata) roi_dir = SkyDir(*snrdata[name]['cel']) snrsize = snrdata[name]['size'] if isinstance(snrsize,list) and len(snrsize) == 2: snrradius = math.sqrt(snrsize[0]*snrsize[1])/2.0 else: snrradius = snrsize/2.0 ds = DataSpecification(**latdata['data']) sa = SpectralAnalysis(ds, binsperdec = 4, emin = 1e4, emax = 10**5.5, irf = "P7SOURCE_V6", roi_dir = roi_dir, maxROI = 10, minROI = 10, event_class= 0) diffuse_sources = get_default_diffuse(**latdata['diffuse']) catalog = Catalog2FGL(**latdata['catalog']) roi=sa.roi(point_sources=[], diffuse_sources=diffuse_sources, catalogs=catalog) print 'bins',roi.bin_edges for source in roi.get_sources(): if np.degrees(source.skydir.difference(roi_dir)) < snrradius + 0.5: roi.del_source(source) snr = ExtendedSource( name = name, model = PowerLaw(), spatial_model = Disk(sigma=snrradius, center=roi_dir) ) roi.add_source(snr) return roi
def test_ps1(self): if PointlikeTest.VERBOSE: print '\nAnalyze a simulated point source against the galactic + isotropic diffuse\n' center = SkyDir(0, 0) diffuse_sources = get_default_diffuse( diffdir='$GLAST_EXT/diffuseModels/v2r0p1/', gfile='ring_2year_P76_v0.fits', ifile='isotrop_2year_P76_source_v1.txt') model = PowerLaw(index=2) model.set_flux(1e-6) ps_mc = PointSource(name='source', skydir=center, model=model) ps_fit = ps_mc.copy() point_sources = [ps_fit] roi = PointlikeTest.get_roi('ps1', center, point_sources, diffuse_sources) global roi_pt roi_pt = roi # helps with debugging if PointlikeTest.VERBOSE: print roi roi.fit(use_gradient=PointlikeTest.USE_GRADIENT) if PointlikeTest.VERBOSE: print roi roi.localize(update=True) roi.fit(use_gradient=PointlikeTest.USE_GRADIENT) if PointlikeTest.VERBOSE: roi.print_summary() print roi self.compare_model(ps_fit, ps_mc) self.compare_spatial_model(ps_fit, ps_mc, roi.lsigma)
def fix_bad_cutoffs(roi, exclude_names): """ Loop over all sources. When ExpCutoff souce has cutoff>10TeV, convert to powerlaw. """ any_changed = False for source in roi.get_sources(): if source.name in exclude_names: continue model = source.model if np.any(model.free) and isinstance( model, ExpCutoff) and model['cutoff'] > 1e7: print 'Converting cutoff source %s to powerlaw because cutoff too high' % source.name new_model = PowerLaw(norm=model['norm'], index=model['index'], e0=model.e0) any_changed = True roi.modify(which=source, model=new_model, keep_old_flux=False) return any_changed
def get_gal(component, free=True): if version == 1: gfile_base = '%s_z%s_Ts%s_v%s_mapcube_fixed_' % (dist, halo, TS, version) elif version == 2: gfile_base = '%s_z%s_Ts%s_v%s_mapcube_' % (dist, halo, TS, version) filename = join(diffdir, gfile_base + component + '.fits.gz') if verbosity: print ' * Loading file %s' % filename if not exists(filename): raise Exception("File %s does not exist." % filename) gmodel = PowerLaw(norm=1, index=0) if fit_index else Constant() ds = get_diffuse_source('MapCubeFunction', filename, gmodel, None, name=component) ds.smodel.free[:] = free return ds
def _compute(self): if self.verbosity: print 'Calculating pointlike upper limit' roi = self.roi name = self.name saved_state = PointlikeState(roi) """ Note keep old flux, because it is important to have the spectral model pushed into the upper_limit code reasonably close to the best fit flux. This is because initial likelihood (ll_0) is used to scale the likelihood so it has to be reasonably close to the best value. """ model = PowerLaw(index=self.powerlaw_index) roi.modify(which=name, model=model, keep_old_flux=True) super(PointlikePowerLawUpperLimit,self)._compute() saved_state.restore(just_spectra=True)
def test_ff(self): """ Simulate from a filefunction object and test that the best fit flux is consistent with the simulated flux. """ name = 'ff' model = PowerLaw(index=2) model.set_flux(1e-6) simdir = path.expand('$SIMDIR/%s' % name) if not os.path.exists(simdir): os.makedirs(simdir) filename = abspath(join(simdir, 'file_function.txt')) model.save_profile(filename, 10, 1e6) ff = FileFunction(file=filename) center = SkyDir(0, 0) ps = PointSource(name='source', skydir=center, model=ff) point_sources = [ps] diffuse_sources = None roi = PointlikeTest.get_roi(name, center, point_sources, diffuse_sources, emin=1e2, emax=1e5, binsperdec=4) if PointlikeTest.VERBOSE: roi.print_summary() print roi roi.fit(use_gradient=PointlikeTest.USE_GRADIENT) if PointlikeTest.VERBOSE: roi.print_summary() print roi fit, error = ff.i_flux(1e2, 1e5, error=True) true = model.i_flux(1e2, 1e5, error=False) self.assertPull(fit, true, error, 'flux')
def get_default_sources(self): point_sources, diffuse_sources = [], [] model = PowerLaw(index=self.powerlaw_index, e0=np.sqrt(self.emin * self.emax)) model.set_flux(self.flux, emin=self.emin, emax=self.emax) ps = PointSource(name='source', model=model.copy(), skydir=self.roi_dir) point_sources.append(ps) if self.isotropic_bg: ds = get_sreekumar() diffuse_sources.append(ds) if self.nearby_source: ps = PointSource(name='nearby_source', model=model.copy(), skydir=SkyDir(self.roi_dir.ra(), self.roi_dir.dec() + 3)) point_sources.append(ps) return point_sources, diffuse_sources
def _calculate(self): like = self.like name = self.name if self.verbosity: print 'Testing cutoff in gtlike' saved_state = SuperState(like) emin, emax = get_full_energy_range(like) self.results = d = dict( energy = energy_dict(emin=emin, emax=emax, energy_units=self.energy_units) ) try: def get_flux(): return like.flux(name, emin, emax) def spectrum(): source = like.logLike.getSource(name) s=source.spectrum() return spectrum_to_dict(s, errors=True) old_flux = get_flux() if spectrum()['name'] == 'PowerLaw': pass else: powerlaw_model=PowerLaw(norm=1e-11, index=2, e0=np.sqrt(emin*emax)) powerlaw_model.set_flux(old_flux,emin=emin,emax=emax) powerlaw_model.set_default_limits(oomp_limits=True) if self.verbosity: print 'powerlaw_model is',powerlaw_model powerlaw_spectrum=build_gtlike_spectrum(powerlaw_model) like.setSpectrum(name,powerlaw_spectrum) if self.verbosity: print 'About to fit powerlaw_spectrum' print summary(like) paranoid_gtlike_fit(like, verbosity=self.verbosity) if self.verbosity: print 'Done fitting powerlaw_spectrum' print summary(like) d['hypothesis_0'] = source_dict(like, name, emin=emin, emax=emax, flux_units=self.flux_units, energy_units=self.energy_units, verbosity=self.verbosity) if self.cutoff_model is None: self.cutoff_model=PLSuperExpCutoff(norm=1e-9, index=1, cutoff=1000, e0=1000, b=1) self.cutoff_model.set_free('b', False) self.cutoff_model.set_flux(old_flux,emin=emin,emax=emax) self.cutoff_model.set_default_limits(oomp_limits=True) if self.verbosity: print 'cutoff_model is',self.cutoff_model cutoff_spectrum=build_gtlike_spectrum(self.cutoff_model) like.setSpectrum(name,cutoff_spectrum) if self.verbosity: print 'About to fit cutoff_model' print summary(like) paranoid_gtlike_fit(like, verbosity=self.verbosity) ll = like.logLike.value() if ll < d['hypothesis_0']['logLikelihood']: # if fit is worse than PowerLaw fit, then # restart fit with parameters almost # equal to best fit powerlaw cutoff_plaw=PLSuperExpCutoff(b=1) cutoff_plaw.set_free('b', False) cutoff_plaw.setp_gtlike('norm', d['hypothesis_0']['spectrum']['Prefactor']) cutoff_plaw.setp_gtlike('index', d['hypothesis_0']['spectrum']['Index']) cutoff_plaw.setp_gtlike('e0', d['hypothesis_0']['spectrum']['Scale']) cutoff_plaw.setp_gtlike('cutoff', 1e6) cutoff_plaw.set_default_limits(oomp_limits=True) temp=build_gtlike_spectrum(cutoff_plaw) like.setSpectrum(name,temp) if self.verbosity: print 'Redoing fit with cutoff same as plaw' print summary(like) paranoid_gtlike_fit(like, verbosity=self.verbosity) if self.verbosity: print 'Done fitting cutoff_spectrum' print summary(like) d['hypothesis_1'] = source_dict(like, name, emin=emin, emax=emax, flux_units=self.flux_units, energy_units=self.energy_units, verbosity=self.verbosity) if self.cutoff_xml_name is not None: like.writeXml(self.cutoff_xml_name) d['TS_cutoff']=d['hypothesis_1']['TS']['reoptimize']-d['hypothesis_0']['TS']['reoptimize'] if self.verbosity: print 'For cutoff test, TS_cutoff = ', d['TS_cutoff'] except Exception, ex: print 'ERROR gtlike test cutoff: ', ex traceback.print_exc(file=sys.stdout) self.results = None
flux=args.flux index=args.index phibins=args.phibins if args.position == 'galcenter': roi_dir = SkyDir(0,0,SkyDir.GALACTIC) elif args.position == 'allsky': roi_dir=random_on_sphere() elif args.position == 'bad': roi_dir=SkyDir(314.4346,-69.5670,SkyDir.GALACTIC) elif args.position == 'pole': roi_dir=SkyDir(0,-90,SkyDir.GALACTIC) elif args.position == 'w44': roi_dir=SkyDir(283.98999,1.355) model_mc = PowerLaw(index=index) model_mc.set_flux(flux, emin=args.emin, emax=args.emax) if args.spatial == 'point': ps = PointSource(name=name, model=model_mc, skydir=roi_dir) point_sources, diffuse_sources = [ps],None sources = [ps] elif args.spatial == 'disk': spatial_model = Disk(sigma=0.25, center=roi_dir) es = ExtendedSource(name=name, model=model_mc, spatial_model=spatial_model) point_sources, diffuse_sources = [],[es] sources = [es] elif args.spatial == 'w44': spatial_model = EllipticalRing(major_axis=.3, minor_axis=0.19, pos_angle=-33, fraction=0.75, center=roi_dir) es = ExtendedSource(name=name, model=model_mc, spatial_model=spatial_model) point_sources, diffuse_sources = [],[es]
def _calculate(self): """ Compute the flux data points for each energy. """ like = self.like name = self.name # Freeze all sources except one to make sed of. all_sources = like.sourceNames() if name not in all_sources: raise Exception("Cannot find source %s in list of sources" % name) saved_state = SuperState(like) self.results = dict( name=name, bands=[], min_ts=self.min_ts, ) for i,(emin,emax,e_middle) in enumerate(zip(self.lower_energy,self.upper_energy,self.middle_energy)): if self.verbosity: print 'Calculating bandfits from %.0dMeV to %.0dMeV' % (emin,emax) like.setEnergyRange(float(emin)+1, float(emax)-1) # Scale the powerlaw to the input spectral model => helps with convergence old_flux = self.init_model.i_flux(emin=emin, emax=emax) model = PowerLaw(index=2, e0=e_middle) model.set_flux(old_flux, emin=emin, emax=emax) norm = model['norm'] model.set_limits('norm',norm/float(self.fit_range),norm*self.fit_range, scale=norm) model.set_limits('index',-5,5) spectrum = build_gtlike_spectrum(model) like.setSpectrum(name,spectrum) like.syncSrcParams(name) if self.verbosity: print 'Before bandfits fitting from %.0dMeV to %.0dMeV' % (emin,emax) print summary(like) paranoid_gtlike_fit(like, verbosity=self.verbosity) if self.verbosity: print 'After bandfits fitting from %.0dMeV to %.0dMeV' % (emin,emax) print summary(like) r = source_dict(like, name, emin=emin, emax=emax, flux_units=self.flux_units, energy_units=self.energy_units, verbosity=self.verbosity) if self.verbosity: print 'Calculating bandfits upper limit from %.0dMeV to %.0dMeV' % (emin,emax) g = GtlikePowerLawUpperLimit(like, name, powerlaw_index=self.upper_limit_index, cl=self.ul_confidence, emin=emin,emax=emax, flux_units=self.flux_units, energy_units=self.energy_units, upper_limit_kwargs=self.upper_limit_kwargs, include_prefactor=True, prefactor_energy=e_middle, verbosity=self.verbosity) r['upper_limit'] = g.todict() r['prefactor'] = powerlaw_prefactor_dict(like, name, errors=True, minos_errors=False, flux_units=self.flux_units) r['significant']=r['TS']['reoptimize']>self.min_ts self.results['bands'].append(r) # revert to old model like.setEnergyRange(*self.init_energes) saved_state.restore()
def _calculate(self): roi = self.roi name = self.name if self.verbosity: print 'Testing cutoff in pointlike' emin,emax=get_full_energy_range(roi) self.results = d = dict( energy = energy_dict(emin=emin, emax=emax, energy_units=self.energy_units) ) saved_state = PointlikeState(roi) old_flux = roi.get_model(name).i_flux(emin,emax) if not isinstance(roi.get_model(name),PowerLaw): powerlaw_model=PowerLaw(norm=1e-11, index=2, e0=np.sqrt(emin*emax)) powerlaw_model.set_mapper('Index', PowerLaw.default_limits['Index']) powerlaw_model.set_flux(old_flux,emin=emin,emax=emax) if self.verbosity: print "powerlaw_model is ",powerlaw_model roi.modify(which=name, model=powerlaw_model, keep_old_flux=False) fit = lambda: roi.fit(**self.fit_kwargs) def ts(): old_quiet = roi.quiet; roi.quiet=True ts = roi.TS(name,quick=False) roi.quiet = old_quiet return ts spectrum = lambda: spectrum_to_dict(roi.get_model(name), errors=True) if self.verbosity: print 'About to fit powerlaw_model' roi.print_summary() fit() if self.verbosity: print 'Done fitting powerlaw_model' roi.print_summary() d['hypothesis_0'] = source_dict(roi, name, emin=emin, emax=emax, flux_units=self.flux_units, energy_units=self.energy_units, verbosity=self.verbosity) if self.cutoff_model is not None: pass else: self.cutoff_model=PLSuperExpCutoff(norm=1e-9, index=1, cutoff=1000, e0=1000, b=1) # Note, don't limit the normalization parameter for p in ['Index', 'Cutoff', 'b']: self.cutoff_model.set_mapper(p, PLSuperExpCutoff.default_limits[p]) self.cutoff_model.set_free('b', False) self.cutoff_model.set_flux(old_flux,emin=emin,emax=emax) if self.verbosity: print "cutoff_model is ",self.cutoff_model roi.modify(which=name, model=self.cutoff_model, keep_old_flux=False) if self.verbosity: print 'About to fit cutoff_model' roi.print_summary() fit() ll = -roi.logLikelihood(roi.parameters()) if ll < d['hypothesis_0']['logLikelihood']: # if fit is worse than PowerLaw fit, then # restart fit with parameters almost # equal to best fit powerlaw self.cutoff_plaw=PLSuperExpCutoff(b=1) self.cutoff_plaw.set_free('b', False) self.cutoff_plaw.setp('norm', d['hypothesis_0']['spectrum']['Norm']) self.cutoff_plaw.setp('index', d['hypothesis_0']['spectrum']['Index']) self.cutoff_plaw.setp('e0', d['hypothesis_0']['spectrum']['e0']) self.cutoff_plaw.setp('cutoff', 1e6) roi.modify(which=name, model=self.cutoff_plaw, keep_old_flux=False) fit() if self.verbosity: print 'Redoing fit with cutoff same as plaw' print 'Before:' roi.print_summary() print fit() if self.verbosity: print 'Done fitting cutoff_model' roi.print_summary() d['hypothesis_1'] = source_dict(roi, name, emin=emin, emax=emax, flux_units=self.flux_units, energy_units=self.energy_units, verbosity=self.verbosity) d['TS_cutoff']=d['hypothesis_1']['TS']['noquick']-d['hypothesis_0']['TS']['noquick'] saved_state.restore()
def _calculate(self,*args,**kwargs): """ Convert all units into sympy arrays after the initial calculation. """ like = self.like name = self.name init_energes = like.energies[[0,-1]] # Freeze all sources except one to make sed of. all_sources = like.sourceNames() if name not in all_sources: raise Exception("Cannot find source %s in list of sources" % name) # make copy of parameter values + free parameters saved_state = SuperState(like) if self.verbosity: print 'Freezing background sources' for other_name in get_background(like): if self.freeze_bg_diffuse: if self.verbosity: print ' * Freezing diffuse source %s' % other_name modify(like, other_name, free=False) else: if self.verbosity: print ' * Freezing spectral shape for diffuse source %s' % other_name modify(like, other_name, freeze_spectral_shape=True) for other_name in get_sources(like): if self.freeze_bg_sources: if self.verbosity: print ' * Freezing bg source %s' % other_name modify(like, other_name, free=False) else: if self.verbosity: print ' * Freezing spectral shape for bg source %s' % other_name modify(like, other_name, freeze_spectral_shape=True) self.raw_results = [] for i,(lower,upper) in enumerate(zip(self.lower,self.upper)): like.setEnergyRange(float(lower)+1, float(upper)-1) e = np.sqrt(lower*upper) if self.verbosity: print 'Calculating SED from %.0dMeV to %.0dMeV' % (lower,upper) """ Note, the most robust method I have found for computing SEDs in gtlike is: (a) Create a generic spectral model with a fixed spectral index. (b) Set the 'Scale' to sqrt(emin*emax) so the prefactor is dNdE in the middle of the sed bin. (b) Set the limits to go from norm/fit_range to norm*fit_range and set the scale to 'norm' """ old_flux = self.init_model.i_flux(emin=lower,emax=upper) model = PowerLaw(index=self.powerlaw_index, e0=e) model.set_flux(old_flux, emin=lower, emax=upper) norm = model['norm'] model.set_limits('norm',norm/float(self.fit_range),norm*self.fit_range, scale=norm) model.set_limits('index',-5,5) model.freeze('index') spectrum = build_gtlike_spectrum(model) like.setSpectrum(name,spectrum) like.syncSrcParams(name) if self.verbosity: print 'Before fitting SED from %.0dMeV to %.0dMeV' % (lower,upper) print summary(like) paranoid_gtlike_fit(like, verbosity=self.verbosity) if self.verbosity: print 'After fitting SED from %.0dMeV to %.0dMeV' % (lower,upper) print summary(like) d = dict() self.raw_results.append(d) d['energy'] = energy_dict(emin=lower, emax=upper, energy_units=self.energy_units) d['flux'] = flux_dict(like, name, emin=lower,emax=upper, flux_units=self.flux_units, errors=True, include_prefactor=True, prefactor_energy=e) d['prefactor'] = powerlaw_prefactor_dict(like, name, errors=self.save_hesse_errors, minos_errors=True, flux_units=self.flux_units) d['TS'] = ts_dict(like, name, verbosity=self.verbosity) if self.verbosity: print 'Calculating SED upper limit from %.0dMeV to %.0dMeV' % (lower,upper) if self.always_upper_limit or d['TS']['reoptimize'] < self.min_ts: ul = GtlikePowerLawUpperLimit(like, name, cl=self.ul_confidence, emin=lower,emax=upper, flux_units=self.flux_units, energy_units=self.energy_units, upper_limit_kwargs=self.upper_limit_kwargs, include_prefactor=True, prefactor_energy=e, verbosity=self.verbosity, ) d['upper_limit'] = ul.todict() # revert to old model like.setEnergyRange(*init_energes) saved_state.restore() self._condense_results()
def new_ps( roi, name, l, b, tsmap_kwargs=dict(size=10), fit_kwargs=dict(use_gradient=False), print_kwargs=dict(galactic=True, maxdist=15), localize=True, minuit_localizer=False, ): """ A 'throw away' convenience function to add a new source to the ROI, localize it, and then print out a string which can be used to modify an ROI to add a new source. """ skydir = SkyDir(l, b, SkyDir.GALACTIC) roi.print_summary(**print_kwargs) emin, emax = roi.bin_edges[[0, -1]] model = PowerLaw(e0=np.sqrt(emin * emax)) ps = PointSource(name=name, skydir=skydir, model=model) roi.add_source(ps) roi.print_summary(**print_kwargs) fit_prefactor(roi, name, **fit_kwargs) roi.fit(**fit_kwargs) roi.print_summary(**print_kwargs) if localize: if minuit_localizer: m = MinuitLocalizer(roi, which=name, fit_kwargs=fit_kwargs) m.localize() else: roi.localize(which=name, update=True) roi.fit(**fit_kwargs) roi.print_summary(**print_kwargs) print roi ts = roi.TS(which=name, quick=False, fit_kwargs=fit_kwargs) print 'TS for source %s is %.1f' % (name, ts) path = os.path.abspath(sys.argv[0]) print """ Code to create point source: # Analysis came from %s ps=%s roi.add_source(ps) """ % (path, pformat(ps)) roi.save('roi.dat') roi.plot_tsmap(filename='residual_tsmap.pdf', fitsfile='residual_tsmap.fits', **tsmap_kwargs)
Norm=14.56863965e-10*args.fluxfactor, Index_1=-1.504042874, Index_2=1.891184873, E_break=e_break, beta=0.1, e0=200) smooth_soft = SmoothBrokenPowerLaw( Index_1=+0.2, Index_2=1.891184873, E_break=e_break, beta=0.1, e0=200) smooth_soft.set_prefactor(smooth_hard(e_break),e_break) plaw=PowerLaw(index=1.891184873, e0=200) plaw.set_prefactor(smooth_hard(e_break), e_break) if spectrum == 'PowerLaw': W44.model = plaw elif spectrum == 'SmoothBrokenPowerLawHard': W44.model = smooth_hard elif spectrum == 'SmoothBrokenPowerLawSoft': W44.model = smooth_soft elif source == 'IC443': """ SmoothBrokenPowerlaw Spectrum is from: /u/gl/funk/data3/ExtendedSources/NewAnalysis/gtlike/IC443/SmoothBrokenPowerlaw/IC443_fitted_BINNED_freeMore_BSP_lowEnergy.minos.xml
class PowerLawApproximator(BaseFitter): defaults = BaseFitter.defaults + ( ('npoints',1000,'number of points in fit'), ('e0',None,'scale for power law'), ('energy_units', 'MeV', 'default units to plot energy flux (y axis) in.'), ('flux_units', 'erg', 'default units to plot energy (x axis) in'), ) @keyword_options.decorate(defaults) def __init__(self, input_model, emin, emax, **kwargs): """ Create an approximate power law spectrum. """ raise Exception("This code doesn't work yet. I think you need the exposure to do the fit correctly.") self.input_model = input_model self.emin = emin self.emax = emax keyword_options.process(self, kwargs) self._calculate() def _calculate(self): self.results = dict() energies = np.logspace(np.log10(self.emin),np.log10(self.emax),self.npoints) if self.e0 is None: self.e0=np.sqrt(self.emin*self.emax) self.results['input_model'] = spectrum_to_dict(self.input_model) self.results['dnde'] = dnde = self.input_model(energies) self.pl_model = PowerLaw(e0=self.e0) self.pl_model.set_flux(self.input_model.i_flux(emin=self.emin,emax=self.emax), emin=self.emin,emax=self.emax) def residuals(args): norm,index=args self.pl_model['norm']=norm self.pl_model['index']=index dnde_pl = self.pl_model(energies) #return np.sum((np.log(dnde) - np.log(dnde_pl))**2) print (np.log10(dnde)-np.log10(dnde_pl))**2 return np.sum((np.log(dnde) - np.log(dnde_pl))**2) #return np.sum((dnde - dnde_pl)**2) best_norm,best_index=fmin(residuals,[self.pl_model['norm'],self.pl_model['index']]) self.pl_model['norm']=best_norm self.pl_model['index']=best_index self.results['pl_model'] = spectrum_to_dict(self.pl_model) def plot(self,filename=None,axes=None,fignum=None,figsize=(4,4)): if axes is None: fig = P.figure(fignum,figsize) axes = SpectralAxes(fig=fig, rect=(0.22,0.15,0.75,0.8), flux_units=self.flux_units, energy_units=self.energy_units) fig.add_axes(axes) axes.set_xlim_units(self.emin*units.MeV, self.emax*units.MeV) sp=SpectrumPlotter(axes=axes) sp.plot(self.results['input_model'], label='input') sp.plot(self.results['pl_model'], label='powerlaw') if filename is not None: P.savefig(filename) if __name__ == "__main__": import doctest doctest.testmod()
class BandFitExtended(object): def __init__(self, which, energy_band, roi): """ extendedsource which index of source energy_band ROIEnergyBand object to fit. bands all energy bands in roi. """ self.energy_band = energy_band self.bands = self.energy_band.bands self.all_bands = roi.bands self.which = which self.all_mybands = roi.dsm.bgmodels[self.which].bands # list of the mybands corresponding to energy_bands self.mybands = [] # Create a lsit of myband object corresponding to the bands # in the energy_band. for eb_band in self.bands: for band, myband in zip(self.all_bands, self.all_mybands): if eb_band == band: self.mybands.append(myband) break def bandLikelihoodExtended(self, parameters, band, myband): new_counts = parameters[0] * myband.er old_counts = band.bg_counts[self.which] tot_term = (band.bg_all_counts + band.ps_all_counts + myband.overlaps * (new_counts - old_counts)) * band.phase_factor pix_term = ( band.pix_counts * np.log(band.bg_all_pix_counts + band.ps_all_pix_counts + myband.es_pix_counts * (new_counts - old_counts))).sum() if band.has_pixels else 0. return tot_term - pix_term def energyBandLikelihoodExtended(self, parameters, m): m.set_parameters(parameters) return sum( self.bandLikelihoodExtended([b.expected(m)], b, mb) for b, mb in zip(self.bands, self.mybands)) def normUncertaintyExtended(self): tot = 0 for b, mb in zip(self.bands, self.mybands): if not b.has_pixels: continue my_pix_counts = mb.es_pix_counts * b.expected(self.m) * mb.er all_pix_counts = b.bg_all_pix_counts + b.ps_all_pix_counts - mb.es_pix_counts * b.bg_counts[ self.which] + my_pix_counts tot += (b.pix_counts * (my_pix_counts / all_pix_counts)**2).sum() return tot**-0.5 def fit(self, saveto=None): bad_fit = False self.m = PowerLaw(free=[True, False], e0=(self.energy_band.emin * self.energy_band.emax)**0.5) # fix index to 2 f = self.energyBandLikelihoodExtended self.fit = fmin(f, self.m.get_parameters(), disp=0, full_output=1, args=(self.m, )) def upper_limit(): flux_copy = self.m[0] zp = self.energyBandLikelihoodExtended(np.asarray([-20]), self.m) # NB -- the 95% upper limit is calculated by assuming the likelihood is peaked at # 0 flux and finding the flux at which it has fallen by 1.35; this is a two-sided # 90% limit, or a one-sided 95% limit -- that's how it works, right? def f95(parameters): return abs( self.energyBandLikelihoodExtended(parameters, self.m) - zp - 1.35) # for some reason, can't get fsolve to work here. good ol' fmin to the rescue self.energy_band.uflux = 10**fmin(f95, np.asarray([-11.75]), disp=0)[0] self.energy_band.lflux = None self.energy_band.flux = None self.m[0] = flux_copy # if flux below a certain level, set an upper limit if self.m[0] < 1e-20: bad_fit = True upper_limit() else: try: err = self.normUncertaintyExtended() except: bad_fit = True err = 0 self.energy_band.flux = self.m[0] self.energy_band.uflux = self.energy_band.flux * (1 + err) self.energy_band.lflux = max(self.energy_band.flux * (1 - err), 1e-30) if saveto is not None: for b, mb in zip(self.bands, self.mybands): b.__dict__[saveto] = (b.expected(self.m) * mb.er if not bad_fit else -1) if bad_fit: self.energy_band.ts = 0 else: null_ll = sum( self.bandLikelihoodExtended([0], b, mb) for b, mb in zip(self.bands, self.mybands)) alt_ll = sum( self.bandLikelihoodExtended([b.expected(self.m) * mb.er], b, mb) for b, mb in zip(self.bands, self.mybands)) self.energy_band.ts = 2 * (null_ll - alt_ll)
class ExtendedSource(DiffuseSource): """ Class inherting from DiffuseSource but implementing a spatial source. The main difference is the requirement of a spatial model to accomany a spectral model. """ defaults = ( ('name', None, 'The name of the extended source.'), ('model', None, 'a Model object.'), ('spatial_model', None, """The spatial model to use. This is a SpatialModel object."""), ) @keyword_options.decorate(defaults) def __init__(self, **kwargs): """ Make the naming consistent with the PointSource object so that extended sources 'feel' like point sources. """ keyword_options.process(self, kwargs) if self.model == None: self.model = PowerLaw() if self.spatial_model == None: self.spatial_model = Disk() if not isinstance(self.spatial_model, SpatialModel): raise Exception( "The diffuse_model passed to an Extended Source must inherit from SpatialModel." ) super(ExtendedSource, self).__init__(diffuse_model=self.spatial_model, scaling_model=self.model, name=self.name) self.model.background = False @property def skydir(self): return self.spatial_model.center @property def smodel(self): """ No reason to keep a model & smodel. """ return self.model @smodel.setter def smodel(self, value): self.model = value def __str__(self, indent=''): return indent + ('\n' + indent).join([ '\n', '=' * 60, 'Name:\t\t%s' % (self.name), 'R.A. (J2000):\t\t%.5f' % (self.spatial_model.center.ra()), 'Dec. (J2000):\t\t%.5f' % (self.spatial_model.center.dec()), 'Model:\t\t%s' % (self.model.full_name()), '\t' + self.model.__str__(indent='\t'), 'SpatialModel:\t%s' % (self.spatial_model.full_name()), '\t' + self.spatial_model.__str__(indent='\t') ]) def copy(self): """ Create a deep copy of an extended source. """ return ExtendedSource(name=self.name, spatial_model=self.spatial_model.copy(), model=self.model.copy())
def fit(self, saveto=None): bad_fit = False self.m = PowerLaw(free=[True, False], e0=(self.energy_band.emin * self.energy_band.emax)**0.5) # fix index to 2 f = self.energyBandLikelihoodExtended self.fit = fmin(f, self.m.get_parameters(), disp=0, full_output=1, args=(self.m, )) def upper_limit(): flux_copy = self.m[0] zp = self.energyBandLikelihoodExtended(np.asarray([-20]), self.m) # NB -- the 95% upper limit is calculated by assuming the likelihood is peaked at # 0 flux and finding the flux at which it has fallen by 1.35; this is a two-sided # 90% limit, or a one-sided 95% limit -- that's how it works, right? def f95(parameters): return abs( self.energyBandLikelihoodExtended(parameters, self.m) - zp - 1.35) # for some reason, can't get fsolve to work here. good ol' fmin to the rescue self.energy_band.uflux = 10**fmin(f95, np.asarray([-11.75]), disp=0)[0] self.energy_band.lflux = None self.energy_band.flux = None self.m[0] = flux_copy # if flux below a certain level, set an upper limit if self.m[0] < 1e-20: bad_fit = True upper_limit() else: try: err = self.normUncertaintyExtended() except: bad_fit = True err = 0 self.energy_band.flux = self.m[0] self.energy_band.uflux = self.energy_band.flux * (1 + err) self.energy_band.lflux = max(self.energy_band.flux * (1 - err), 1e-30) if saveto is not None: for b, mb in zip(self.bands, self.mybands): b.__dict__[saveto] = (b.expected(self.m) * mb.er if not bad_fit else -1) if bad_fit: self.energy_band.ts = 0 else: null_ll = sum( self.bandLikelihoodExtended([0], b, mb) for b, mb in zip(self.bands, self.mybands)) alt_ll = sum( self.bandLikelihoodExtended([b.expected(self.m) * mb.er], b, mb) for b, mb in zip(self.bands, self.mybands)) self.energy_band.ts = 2 * (null_ll - alt_ll)
def get_diffuse_source(spatialModel='ConstantValue', spatialModelFile=None, spectralModel='PowerLaw', spectralModelFile=None, name=None, diffdir = None): """ Return a DiffuseSource instance suitable for instantiating a child of ROIDiffuseModel. NB -- don't support front/back distinction atm. The list of supported models is currently very short, but covers the usual cases for modeling diffuse backgrounds. Additional use cases can be developed on an ad hoc basis. Arguments: spatialModel -- an XML-style keyword. Valid options are 1) ConstantValue (isotropic) 2) MapCubeFunction (from a FITS file) spatialModelFile -- if a mapcube is specified, its location spectralModel -- This can be either an XML-style keyword or an instance of Model. If an XML-style keyword, valid options are 1) FileFunction 2) PowerLaw 3) Constant spectralModelFile -- if a tabular function is specified, its location name -- a name for the ol' model diffdir -- if the XML files specify paths relative to some directory, set this variable appropriately """ if (diffdir is not None): if spatialModelFile is not None: spatialModelFile = os.path.join(diffdir,spatialModelFile) if spectralModelFile is not None: spectralModelFile = os.path.join(diffdir,spectralModelFile) # check input sanity if not isinstance(spectralModel,Model): if (spectralModelFile is not None): if not os.path.exists(path.expand(spectralModelFile)): raise Exception('Could not find the ASCII file specified for FileFunction') elif not (spectralModel == 'PowerLaw' or spectralModel == 'Constant'): raise NotImplementedError,'Must provide one of the understood spectral models.' else: pass if spatialModel=='MapCubeFunction': if (spatialModelFile is None) or (not os.path.exists(path.expand(spatialModelFile))): raise Exception('Could not find the FITS file specified for MapCubeFunction (file = %s).' % spatialModelFile) elif spatialModel != 'ConstantValue': raise NotImplementedError,'Must provide one of the understood spatial models.' else: pass ston = Singleton2() dmodel = None; smodel = None # deal with isotropic models if spatialModel=='ConstantValue': if isinstance(spectralModel,Model): smodel=spectralModel dmodel=IsotropicConstant() elif spectralModelFile is not None: smodel = FileFunction(normalization=1, file=spectralModelFile) dmodel = IsotropicConstant() elif spectralModel == 'PowerLaw': # use Sreekumar-like defaults smodel = PowerLaw(index=2.1) smodel.set_flux(1.5e-5, emin=100, emax=N.inf) dmodel = IsotropicConstant() else: raise Exception("Unable to parse input.") # deal with mapcubes else: if spectralModel == 'FileFunction': dmodel1 = IsotropicSpectrum(spectralModelFile) dmodel2 = ston.add(DiffuseFunction,spatialModelFile,spatialModelFile) dmodel = CompositeSkySpectrum(dmodel1,dmodel2) dmodel.saveme1 = dmodel1; dmodel.saveme2 = dmodel2 smodel = Constant() else: dmodel = ston.add(DiffuseFunction,path.expand(spatialModelFile),path.expand(spatialModelFile)) dmodel.filename=spatialModelFile if spectralModel == 'PowerLaw': smodel = ScalingPowerLaw() elif spectralModel == 'Constant': smodel = Constant() else: smodel = spectralModel if (dmodel is None) or (smodel is None): raise Exception('Was unable to parse input.') return DiffuseSource(dmodel,smodel,name)
def _calculate(self, *args, **kwargs): """ Convert all units into sympy arrays after the initial calculation. """ like = self.like name = self.name init_energes = like.energies[[0, -1]] # Freeze all sources except one to make sed of. all_sources = like.sourceNames() if name not in all_sources: raise Exception("Cannot find source %s in list of sources" % name) # make copy of parameter values + free parameters saved_state = SuperState(like) if self.verbosity: print 'Freezing background sources' for other_name in get_background(like): if self.freeze_bg_diffuse: if self.verbosity: print ' * Freezing diffuse source %s' % other_name modify(like, other_name, free=False) else: if self.verbosity: print ' * Freezing spectral shape for diffuse source %s' % other_name modify(like, other_name, freeze_spectral_shape=True) for other_name in get_sources(like): if self.freeze_bg_sources: if self.verbosity: print ' * Freezing bg source %s' % other_name modify(like, other_name, free=False) else: if self.verbosity: print ' * Freezing spectral shape for bg source %s' % other_name modify(like, other_name, freeze_spectral_shape=True) self.raw_results = [] for i, (lower, upper) in enumerate(zip(self.lower, self.upper)): like.setEnergyRange(float(lower) + 1, float(upper) - 1) e = np.sqrt(lower * upper) if self.verbosity: print 'Calculating SED from %.0dMeV to %.0dMeV' % (lower, upper) """ Note, the most robust method I have found for computing SEDs in gtlike is: (a) Create a generic spectral model with a fixed spectral index. (b) Set the 'Scale' to sqrt(emin*emax) so the prefactor is dNdE in the middle of the sed bin. (b) Set the limits to go from norm/fit_range to norm*fit_range and set the scale to 'norm' """ old_flux = self.init_model.i_flux(emin=lower, emax=upper) model = PowerLaw(index=self.powerlaw_index, e0=e) model.set_flux(old_flux, emin=lower, emax=upper) norm = model['norm'] model.set_limits('norm', norm / float(self.fit_range), norm * self.fit_range, scale=norm) model.set_limits('index', -5, 5) model.freeze('index') spectrum = build_gtlike_spectrum(model) like.setSpectrum(name, spectrum) like.syncSrcParams(name) if self.verbosity: print 'Before fitting SED from %.0dMeV to %.0dMeV' % (lower, upper) print summary(like) paranoid_gtlike_fit(like, verbosity=self.verbosity) if self.verbosity: print 'After fitting SED from %.0dMeV to %.0dMeV' % (lower, upper) print summary(like) d = dict() self.raw_results.append(d) d['energy'] = energy_dict(emin=lower, emax=upper, energy_units=self.energy_units) d['flux'] = flux_dict(like, name, emin=lower, emax=upper, flux_units=self.flux_units, errors=True, include_prefactor=True, prefactor_energy=e) d['prefactor'] = powerlaw_prefactor_dict( like, name, errors=self.save_hesse_errors, minos_errors=True, flux_units=self.flux_units) d['TS'] = ts_dict(like, name, verbosity=self.verbosity) if self.verbosity: print 'Calculating SED upper limit from %.0dMeV to %.0dMeV' % ( lower, upper) if self.always_upper_limit or d['TS']['reoptimize'] < self.min_ts: ul = GtlikePowerLawUpperLimit( like, name, cl=self.ul_confidence, emin=lower, emax=upper, flux_units=self.flux_units, energy_units=self.energy_units, upper_limit_kwargs=self.upper_limit_kwargs, include_prefactor=True, prefactor_energy=e, verbosity=self.verbosity, ) d['upper_limit'] = ul.todict() # revert to old model like.setEnergyRange(*init_energes) saved_state.restore() self._condense_results()
def test_extended_source(self): PointlikeTest.p('USE_GRADIENT=%s' % PointlikeTest.USE_GRADIENT) if PointlikeTest.VERBOSE: PointlikeTest.p( 'Analyze a simulated extended source against an isotropic background (E>10GeV)' ) center = SkyDir(0, 0) # Sreekumar-like isotropic point_sources = [] diffuse_sources = [ get_diffuse_source('ConstantValue', None, 'PowerLaw', None, 'Isotropic Diffuse') ] model = PowerLaw(index=2) model.set_flux(1e-4) if PointlikeTest.VERBOSE: PointlikeTest.p('Simulating gaussian source with sigma=1 degrees') spatial_model = Gaussian(p=[1], center=center) es_mc = ExtendedSource(name='source', spatial_model=spatial_model, model=model) es_fit = es_mc.copy() diffuse_sources.append(es_fit) roi = PointlikeTest.get_roi('extended_test', center, point_sources, diffuse_sources, emin=1e4) global roi_ext roi_ext = roi # helps with debugging if PointlikeTest.VERBOSE: print roi if PointlikeTest.VERBOSE: PointlikeTest.p('Setting initial spatial model to 0.3 degrees') roi.modify(which='source', spatial_model=Gaussian(0.3)) if PointlikeTest.VERBOSE: print roi roi.fit(use_gradient=PointlikeTest.USE_GRADIENT) if PointlikeTest.VERBOSE: print roi roi.fit_extension(which='source', use_gradient=PointlikeTest.USE_GRADIENT) roi.localize(update=True) roi.fit(use_gradient=PointlikeTest.USE_GRADIENT) self.compare_model(es_fit, es_mc) self.compare_spatial_model(es_fit, es_mc, roi.lsigma) self.assertTrue( roi.TS(which='source') > 25, 'The source should be significant') self.assertTrue( roi.TS_ext(which='source') > 25, 'And significantly extended') es_mc.spatial_model.save_template('$SIMDIR/extended_template.fits') if PointlikeTest.VERBOSE: PointlikeTest.p( 'Now, switching from Disk soruce to template source.') roi.del_source(which='source') template_source = ExtendedSource( name='template_source', model=es_mc.model, spatial_model=SpatialMap(file='$SIMDIR/extended_template.fits')) roi.add_source(template_source) roi.fit(use_gradient=PointlikeTest.USE_GRADIENT) self.compare_model(template_source, es_mc) self.assertTrue( roi.TS(which='template_source') > 25, 'Make sure these functions work similary with spatial_map')
def build_roi(self, name, fast): if fast: roi_size=5 binsperdec = 2 max_free=2 free_radius=2 else: roi_size = 10 binsperdec = 4 max_free=5 free_radius=5 catalog = Catalog2FGL('$FERMI/catalogs/gll_psc_v05.fit', latextdir='$FERMI/extended_archives/gll_psc_v05_templates', prune_radius=0, max_free=max_free, free_radius=free_radius, limit_parameters=True) ft1 = self.radiopsr_loader.get_ft1(name) ft2 = self.radiopsr_loader.get_ft2(name) ltcube = self.radiopsr_loader.get_ltcube(name) binfile = self.radiopsr_loader.get_binfile(name, binsperdec) roi_dir = self.radiopsr_loader.get_skydir(name) ds = DataSpecification( ft1files = ft1, ft2files = ft2, ltcube = ltcube, binfile = binfile) sa = SpectralAnalysis(ds, binsperdec = binsperdec, emin = 100, emax = 1000000, irf = "P7SOURCE_V6", roi_dir = roi_dir, maxROI = roi_size, minROI = roi_size, event_class= 0) fit_emin = 1e2 fit_emax = 10**5.5 model=PowerLaw(index=2, e0=np.sqrt(fit_emin*fit_emax)) model.set_limits('index',-5,5) ps = PointSource(name=name, model=model, skydir=roi_dir) point_sources = [ps] diffuse_sources = get_default_diffuse(diffdir="/afs/slac/g/glast/groups/diffuse/rings/2year", gfile="ring_2year_P76_v0.fits", ifile="isotrop_2year_P76_source_v0.txt", limit_parameters=True) roi=sa.roi(point_sources=point_sources, diffuse_sources=diffuse_sources, catalogs=catalog, fit_emin=fit_emin, fit_emax=fit_emax) return roi
def _calculate(self): like = self.like name = self.name if self.verbosity: print 'Testing cutoff in gtlike' saved_state = SuperState(like) emin, emax = get_full_energy_range(like) self.results = d = dict(energy=energy_dict( emin=emin, emax=emax, energy_units=self.energy_units)) try: def get_flux(): return like.flux(name, emin, emax) def spectrum(): source = like.logLike.getSource(name) s = source.spectrum() return spectrum_to_dict(s, errors=True) old_flux = get_flux() if spectrum()['name'] == 'PowerLaw': pass else: powerlaw_model = PowerLaw(norm=1e-11, index=2, e0=np.sqrt(emin * emax)) powerlaw_model.set_flux(old_flux, emin=emin, emax=emax) powerlaw_model.set_default_limits(oomp_limits=True) if self.verbosity: print 'powerlaw_model is', powerlaw_model powerlaw_spectrum = build_gtlike_spectrum(powerlaw_model) like.setSpectrum(name, powerlaw_spectrum) if self.verbosity: print 'About to fit powerlaw_spectrum' print summary(like) paranoid_gtlike_fit(like, verbosity=self.verbosity) if self.verbosity: print 'Done fitting powerlaw_spectrum' print summary(like) d['hypothesis_0'] = source_dict(like, name, emin=emin, emax=emax, flux_units=self.flux_units, energy_units=self.energy_units, verbosity=self.verbosity) if self.cutoff_model is None: self.cutoff_model = PLSuperExpCutoff(norm=1e-9, index=1, cutoff=1000, e0=1000, b=1) self.cutoff_model.set_free('b', False) self.cutoff_model.set_flux(old_flux, emin=emin, emax=emax) self.cutoff_model.set_default_limits(oomp_limits=True) if self.verbosity: print 'cutoff_model is', self.cutoff_model cutoff_spectrum = build_gtlike_spectrum(self.cutoff_model) like.setSpectrum(name, cutoff_spectrum) if self.verbosity: print 'About to fit cutoff_model' print summary(like) paranoid_gtlike_fit(like, verbosity=self.verbosity) ll = like.logLike.value() if ll < d['hypothesis_0']['logLikelihood']: # if fit is worse than PowerLaw fit, then # restart fit with parameters almost # equal to best fit powerlaw cutoff_plaw = PLSuperExpCutoff(b=1) cutoff_plaw.set_free('b', False) cutoff_plaw.setp_gtlike( 'norm', d['hypothesis_0']['spectrum']['Prefactor']) cutoff_plaw.setp_gtlike('index', d['hypothesis_0']['spectrum']['Index']) cutoff_plaw.setp_gtlike('e0', d['hypothesis_0']['spectrum']['Scale']) cutoff_plaw.setp_gtlike('cutoff', 1e6) cutoff_plaw.set_default_limits(oomp_limits=True) temp = build_gtlike_spectrum(cutoff_plaw) like.setSpectrum(name, temp) if self.verbosity: print 'Redoing fit with cutoff same as plaw' print summary(like) paranoid_gtlike_fit(like, verbosity=self.verbosity) if self.verbosity: print 'Done fitting cutoff_spectrum' print summary(like) d['hypothesis_1'] = source_dict(like, name, emin=emin, emax=emax, flux_units=self.flux_units, energy_units=self.energy_units, verbosity=self.verbosity) if self.cutoff_xml_name is not None: like.writeXml(self.cutoff_xml_name) d['TS_cutoff'] = d['hypothesis_1']['TS']['reoptimize'] - d[ 'hypothesis_0']['TS']['reoptimize'] if self.verbosity: print 'For cutoff test, TS_cutoff = ', d['TS_cutoff'] except Exception, ex: print 'ERROR gtlike test cutoff: ', ex traceback.print_exc(file=sys.stdout) self.results = None
def integral(skydir): i = lambda m: m.integral(skydir, emin, emax) return i(gal.dmodel[0]) + i(iso.dmodel[0]) bg_ratio = integral(SkyDir(0,0,SkyDir.GALACTIC))/integral(roi_dir) flux = galcenter_flux*bg_ratio**-0.5 print 'index=%.1f, galcenter_flux=%.1e, bg_ratio=%.2f, l,b=%.2f,%.2f, flux=%.1e' % \ (index,galcenter_flux,bg_ratio,roi_dir.l(),roi_dir.b(),flux) name = 'source_index_%g' % index tempdir = mkdtemp(prefix='/scratch/') model_mc = PowerLaw(index=index); model_mc.set_flux(flux, 1e2, 1e5) ft1 = join(tempdir,'ft1.fits') binfile = join(tempdir,'binned.fits') ft2 = join(tempdir, 'ft2.fits') ltcube = join(tempdir, 'ltcube.fits') ds = DataSpecification( ft1files = ft1, ft2files = ft2, binfile = binfile, ltcube = ltcube) sa = SpectralAnalysisMC(ds, emin=emin, emax=emax, binsperdec=8,
irf="P7SOURCE_V6" skydir_mc = SkyDir() bg = get_sreekumar() ft2 = dict2fgl['ft2'] ltcube = dict2fgl['ltcube'] results = [] for extension_mc in extensions: print 'Looping over extension_mc=%g' % extension_mc model_mc = PowerLaw(index=index_mc) model_mc.set_flux(flux_mc(extension_mc), emin, emax) r = dict( type = args.type, mc = dict( extension=extension_mc, gal=[ skydir_mc.l(), skydir_mc.b() ], cel=[ skydir_mc.ra(), skydir_mc.dec() ], model=spectrum_to_dict(model_mc), flux=pointlike_model_to_flux(model_mc, emin, emax), ) ) tempdir = mkdtemp()
PixelData(ft1files=diffuse_ft1, binfile=diffuse_binfile, binsperdec=4, event_class=0) results_dict = [] index_mc = 2 for flux_mc in [1e-9, 3e-6, 3e-9, 1e-6, 1e-8, 3e-7, 3e-8, 1e-7]: source_str = "%g_%g_%s" % (flux_mc, index_mc, istr) print "Flux_mc=%g, Index_mc=%g" % (flux_mc, index_mc) name_mc = "source_%s" % istr model_mc = PowerLaw(p=[1, index_mc]) model_mc.set_flux(flux_mc, 100, N.inf) source_mc = PointSource(name=name_mc, skydir=skydir_mc, model=model_mc) source_ft1 = join(tempdir, "source_%s_ft1.fits" % source_str) source_binfile = join(tempdir, "source_%s_binned.fits" % source_str) all_binfile = join(tempdir, "all_%s_binned.fits" % source_str) mc = MonteCarlo( point_sources=source_mc, seed=i, irf=irf, ft1=source_ft1, ft2=ft2,
def _calculate(self): roi = self.roi name = self.name if self.verbosity: print 'Testing cutoff in pointlike' emin, emax = get_full_energy_range(roi) self.results = d = dict(energy=energy_dict( emin=emin, emax=emax, energy_units=self.energy_units)) saved_state = PointlikeState(roi) old_flux = roi.get_model(name).i_flux(emin, emax) if not isinstance(roi.get_model(name), PowerLaw): powerlaw_model = PowerLaw(norm=1e-11, index=2, e0=np.sqrt(emin * emax)) powerlaw_model.set_mapper('Index', PowerLaw.default_limits['Index']) powerlaw_model.set_flux(old_flux, emin=emin, emax=emax) if self.verbosity: print "powerlaw_model is ", powerlaw_model roi.modify(which=name, model=powerlaw_model, keep_old_flux=False) fit = lambda: roi.fit(**self.fit_kwargs) def ts(): old_quiet = roi.quiet roi.quiet = True ts = roi.TS(name, quick=False) roi.quiet = old_quiet return ts spectrum = lambda: spectrum_to_dict(roi.get_model(name), errors=True) if self.verbosity: print 'About to fit powerlaw_model' roi.print_summary() fit() if self.verbosity: print 'Done fitting powerlaw_model' roi.print_summary() d['hypothesis_0'] = source_dict(roi, name, emin=emin, emax=emax, flux_units=self.flux_units, energy_units=self.energy_units, verbosity=self.verbosity) if self.cutoff_model is not None: pass else: self.cutoff_model = PLSuperExpCutoff(norm=1e-9, index=1, cutoff=1000, e0=1000, b=1) # Note, don't limit the normalization parameter for p in ['Index', 'Cutoff', 'b']: self.cutoff_model.set_mapper( p, PLSuperExpCutoff.default_limits[p]) self.cutoff_model.set_free('b', False) self.cutoff_model.set_flux(old_flux, emin=emin, emax=emax) if self.verbosity: print "cutoff_model is ", self.cutoff_model roi.modify(which=name, model=self.cutoff_model, keep_old_flux=False) if self.verbosity: print 'About to fit cutoff_model' roi.print_summary() fit() ll = -roi.logLikelihood(roi.parameters()) if ll < d['hypothesis_0']['logLikelihood']: # if fit is worse than PowerLaw fit, then # restart fit with parameters almost # equal to best fit powerlaw self.cutoff_plaw = PLSuperExpCutoff(b=1) self.cutoff_plaw.set_free('b', False) self.cutoff_plaw.setp('norm', d['hypothesis_0']['spectrum']['Norm']) self.cutoff_plaw.setp('index', d['hypothesis_0']['spectrum']['Index']) self.cutoff_plaw.setp('e0', d['hypothesis_0']['spectrum']['e0']) self.cutoff_plaw.setp('cutoff', 1e6) roi.modify(which=name, model=self.cutoff_plaw, keep_old_flux=False) fit() if self.verbosity: print 'Redoing fit with cutoff same as plaw' print 'Before:' roi.print_summary() print fit() if self.verbosity: print 'Done fitting cutoff_model' roi.print_summary() d['hypothesis_1'] = source_dict(roi, name, emin=emin, emax=emax, flux_units=self.flux_units, energy_units=self.energy_units, verbosity=self.verbosity) d['TS_cutoff'] = d['hypothesis_1']['TS']['noquick'] - d[ 'hypothesis_0']['TS']['noquick'] saved_state.restore()
def _compute(self): """ Wrap up calculating the flux upper limit for a powerlaw source. This function employes the pyLikelihood function IntegralUpperLimit to calculate a Bayesian upper limit. The primary benefit of this function is that it replaces the spectral model automatically with a PowerLaw spectral model and fixes the index to -2. It then picks a better scale for the powerlaw and gives the upper limit calculation a more reasonable starting value, which helps the convergence. """ if self.verbosity: print 'Calculating gtlike power-law upper limit' like = self.like name = self.name saved_state = SuperState(like) e = np.sqrt(self.emin*self.emax) """ I had tons of trouble getting a robust fitting algorithm. The problem with computing upper limits is (a) Getting an initial fit of the region (with the spectral index fixed) to converge (b) Getting the upper limit to integrate over a good range. This is what I found to be most robust way to compute upper limits: (a) Create a generic powerlaw model with the spectral index fixed at the desired value (typically set to -2). Note, don't set e0, use default. This ensures that the prefactor range really does convert to a physically reasonable range of parameters. (b) Give the spectral model the pointlike default spectral limits. This is important because it gives the source a big enough range such that the upper limit can find a proper integration range. (c) Set the flux of the current model to equal the flux of the input model. This starts the fitter at a reasonable value. Do this setting with the set_flux flag strict=False beacuse, in case the initial fit totally failed to converge (flux -> 0), you don't want to put the starting value fo the flux too far away from the true value. (d) Keep the lower and upper limit on the prefactor as the pointlike default limits, but set the scale of the source to be the new 'norm' found by preserving the flux. This ensures the fitter doesn't have too much trouble finding the true minimum. Using this procedure, you get a reasonable parameter limits which allows the preliminary fit to converge and the upper limits code to integrate over a reasonable parameter range. """ source = like.logLike.getSource(name) spectrum=source.spectrum() old_flux = like.flux(name, self.emin, self.emax) model = PowerLaw(index=self.powerlaw_index) model.set_flux(old_flux, emin=self.emin, emax=self.emax, strict=False) model.set_default_limits(oomp_limits=True) spectrum = build_gtlike_spectrum(model) like.setSpectrum(name,spectrum) like.syncSrcParams(name) results = super(GtlikePowerLawUpperLimit,self)._compute() saved_state.restore()