예제 #1
0
def RichardsModel(psi, t, dz, n, p, vg, qTfun, qBot, psiTop, psiBot):
    # Basic properties:
    C = vg.CFun(psi, p)
    # initialize vectors:
    q = np.zeros(n + 1)
    # # Upper boundary
    # if qTop == []:  # Fixed value
    #     KTop = vg.KFun(np.zeros(1) + psiTop, p)
    #     q[n] = -KTop * ((psiTop - psi[n - 1]) / dz * 2 + 1)
    # else:  # Fixed flux
    #     q[n] = qTop

    # if t>10:
    #     q[n] = qTfun(10)
    # else:
    #     q[n] = qTfun(t)
    if t > 160920:
        q[n] = qTfun(160920)
    else:
        q[n] = qTfun(t)
    # Lower boundary
    if qBot == []:
        if psiBot == []:
            # Free drainage: fixed flux: fixed gradient
            KBot = vg.KFun(np.zeros(1) + psi[0], p)
            q[0] = -KBot
        else:
            # Type 1 boundary: Fixed gradient
            KBot = vg.KFun(np.zeros(1) + psiBot, p)
            q[0] = -KBot * ((psi[0] - psiBot) / dz * 2 + 1.0)
    else:
        # Type 2 boundary
        q[0] = qBot
    # Internal nodes
    i = np.arange(0, n - 1)
    Knodes = vg.KFun(psi, p)
    Kmid = (Knodes[i + 1] + Knodes[i]) / 2.0

    j = np.arange(1, n)
    q[j] = -Kmid * ((psi[i + 1] - psi[i]) / dz + 1.0)
    if q[n] != 0:
        if q[n] < q[n - 1]:  # because here q is a negative value
            print('Water accumulated at the top, time = ', t / 60, 'min(s)')
            KTop = vg.KFun(psiTop, p)
            dhdz = (psiTop - psi[n - 1]) * 2 / dz + 1
            q[n] = -KTop * dhdz
    # Continuity
    i = np.arange(0, n)
    dpsidt = (-(q[i + 1] - q[i]) / dz) / C

    return dpsidt
예제 #2
0
def PlotProps(pars):
    import numpy as np
    import pylab as pl
    import vanGenuchten as vg
    psi = np.linspace(-10, 2, 200)
    pl.figure
    pl.subplot(3, 1, 1)
    pl.plot(psi, vg.thetaFun(psi, pars))
    pl.ylabel(r'$\theta(\psi) [-]$')
    pl.subplot(3, 1, 2)
    pl.plot(psi, vg.CFun(psi, pars))
    pl.ylabel(r'$C(\psi) [1/m]$')
    pl.subplot(3, 1, 3)
    pl.plot(psi, vg.KFun(psi, pars))
    pl.xlabel(r'$\psi [m]$')
    pl.ylabel(r'$K(\psi) [m/d]$')
예제 #3
0
    if q[n] != 0:
        if q[n] < q[n - 1]:  # because here q is a negative value
            print('Water accumulated at the top, time = ', t / 60, 'min(s)')
            KTop = vg.KFun(psiTop, p)
            dhdz = (psiTop - psi[n - 1]) * 2 / dz + 1
            q[n] = -KTop * dhdz
    # Continuity
    i = np.arange(0, n)
    dpsidt = (-(q[i + 1] - q[i]) / dz) / C

    return dpsidt


psi = np.linspace(-10, 5)
theta = vg.thetaFun(psi, p)
C = vg.CFun(psi, p)
K = vg.KFun(psi, p)

pl.figure()
pl.rcParams['figure.figsize'] = (5.0, 10.0)
pl.subplot(311)
pl.plot(psi, theta)
pl.ylabel(r'$\theta$', fontsize=20)
pl.subplot(312)
pl.plot(psi, C)
pl.ylabel(r'$C$', fontsize=20)
pl.subplot(313)
pl.plot(psi, K)
pl.ylabel(r'$K$', fontsize=20)
pl.xlabel(r'$\psi$', fontsize=20)