예제 #1
0
    def build_flat_plane(self):
        scene = Scene(self.screen, self.camera_position, COLOUR_WHITE, self.scale)

        count = 1
        for x in range(count):
            for y in range(count):
                s = int(self.screen.width / count)
                cube_material = Material(
                    (0 + int(random.random() * 100), 150 + int(random.random() * 100), int(1 * random.random())),
                    # (0,0,255),
                    (0.5, 0.5, 0.5),
                    (0.8, 0.8, 0.8),
                    (0.5, 0.5, 0.5),
                    50
                )
                rectangle = Rectangle(
                    Point(x * s - self.screen.width/2, -self.screen.height / 2, self.screen.distance + y * s),
                    Point(x * s - self.screen.width/2, -self.screen.height / 2, self.screen.distance + (y+1) * s),
                    Point((x+1) * s - self.screen.width/2, -self.screen.height / 2, self.screen.distance + y * s),
                    cube_material
                )
                scene.add_object(rectangle)

        light_position = Point(-self.screen.width/4,-self.screen.height/2 + 50, self.screen.width * 4 + self.screen.distance)
        light = Light(light_position)
        scene.add_light(light)

        return scene
예제 #2
0
    def __init__(self):
        super().__init__()

        self.setWindowTitle("Koch Curve - Iteration 0")
        self.setFixedSize(640, 480)

        self.iterations = [[Point(20, self.height() - 20), Point(self.width() - 20, self.height() - 20)]]
        self.current_iteration = 0

        self.show()
예제 #3
0
 def draw_coordinate_grid(self, num=(10, 10)):
     for x in xrange(int(self.field.left), 1 + int(self.field.right), 1):
         pygame.draw.line(
             self.screen, GRID_COLOR if x != 0 else AXES_COLOR,
             self.field.fit_on_screen(Point(x, self.field.bottom)),
             self.field.fit_on_screen(Point(x, self.field.top)))
     for y in xrange(int(self.field.bottom), 1 + int(self.field.top), 1):
         pygame.draw.line(
             self.screen, GRID_COLOR if y != 0 else AXES_COLOR,
             self.field.fit_on_screen(Point(self.field.left, y)),
             self.field.fit_on_screen(Point(self.field.right, y)))
예제 #4
0
파일: cells.py 프로젝트: LandoSama/cellular
	def __init__(self, x, y, mass=0.3, energy=0.1, x_vel=0.0, y_vel=0.0):
		"""Cells begin with a specified position, without velocity, task or destination."""
		# Position, Velocity and Acceleration vectors:
		self.pos = Point(float(x), float(y))
		self.vel = Vector(x_vel, y_vel)
		self.acl = Vector(0.0, 0.0)

		# Arbitrary constants:
		self.density		= .005			# density is used to calculate radius

		# Required for motion:
		self.mass		 = 1
		self.walk_force		 = 0.001
		self.exerted_force	 = Vector(0.0, 0.0)
		self.weight_management()

		# Required for logic:
		self.task		 = None
		self.destination	 = None
		self.destination_type	 = None
		self.energy		 = energy

		# Task jumptable:
		self.TaskTable			= {}
		self.TaskTable[None]		= self.task_none
		self.TaskTable["FindingFood"]	= self.task_finding_food
		self.TaskTable["GettingFood"]	= self.task_getting_food

		# Misc:
		self.color = random_color()
예제 #5
0
파일: objects.py 프로젝트: codebox/pytrace
    def _point(self, x, y, z):
        rotated_x = x * self.side_length / 2
        rotated_y = y * self.side_length / 2
        rotated_z = z * self.side_length / 2

        # apply z-axis rotation
        rotated_x, rotated_y = rotated_x * math.cos(
            self.z_rotation) - rotated_y * math.sin(
                self.z_rotation), rotated_x * math.sin(
                    self.z_rotation) + rotated_y * math.cos(self.z_rotation)

        # apply y-axis rotation
        rotated_x, rotated_z = rotated_x * math.cos(
            self.y_rotation) + rotated_z * math.sin(
                self.y_rotation), -rotated_x * math.sin(
                    self.y_rotation) + rotated_z * math.cos(self.y_rotation)

        # apply x-axis rotation
        rotated_y, rotated_z = rotated_y * math.cos(
            self.x_rotation) - rotated_z * math.sin(
                self.x_rotation), rotated_y * math.sin(
                    self.x_rotation) + rotated_z * math.cos(self.x_rotation)

        return Point(rotated_x + self.center.x, rotated_y + self.center.y,
                     rotated_z + self.center.z)
예제 #6
0
파일: checker.py 프로젝트: Amwap/Checkers
    def searcher(self,
                 position):  # - Блят! да почему она не работает как надо?!
        # - Потому, что ты перепутал Х с У долбоёб!
        temp_list = []
        point = False
        for stage in self.algorithm:

            if stage == "next":
                point = True
                if len(temp_list) != 0:
                    self.priority = True
                    self.move_list = temp_list
                    return 'complite'
                continue

            if not (1 <= (self.position.col + stage.col) <= 8): continue
            if not (1 <= (self.position.row + stage.row) <= 8): continue

            if point == True:
                field = self.matrix[self.position.col +
                                    stage.col][self.position.row + stage.row]
                team = field.get_team()
                if field.get_team() == "free":
                    temp_list.append(
                        Point(self.position.col + stage.col,
                              self.position.row + stage.row))

        self.move_list = temp_list
예제 #7
0
파일: objects.py 프로젝트: codebox/pytrace
    def get_intersection_point(self, line):
        line_unit_vector = line.vector.unit()

        n_dot_u = self.plane_normal.dot_product(line_unit_vector)
        if not n_dot_u:
            # The line is parallel to the plane
            return None

        w = Vector.from_points(self.p1, line.point)
        s1 = -self.plane_normal.dot_product(w) / n_dot_u
        if s1 < 0:
            # The intersection point is on the wrong side of line.point
            return None

        intersection = Point(w.x + s1 * line_unit_vector.x + self.p1.x,
                             w.y + s1 * line_unit_vector.y + self.p1.y,
                             w.z + s1 * line_unit_vector.z + self.p1.z)
        a_m = Vector.from_points(self.p1, intersection)
        a_b = Vector.from_points(self.p1, self.p2)
        a_d = Vector.from_points(self.p1, self.p3)

        am_dot_ab = a_m.dot_product(a_b)
        ab_dot_ab = a_b.dot_product(a_b)
        am_dot_ad = a_m.dot_product(a_d)
        ad_dot_ad = a_d.dot_product(a_d)

        if (0 < am_dot_ab < ab_dot_ab) and (0 < am_dot_ad < ad_dot_ad):
            return intersection
예제 #8
0
 def image_coordinate(self, space_coord):
     x, y = space_coord.x, space_coord.y
     # y direction is opposite
     return Point(
         self.origin_x + x * self.cell_size,
         self.origin_y - y * self.cell_size
     )
예제 #9
0
    def __init__(self,
                 x,
                 y,
                 mass=0.3,
                 energy=0.1,
                 x_vel=0.0,
                 y_vel=0.0,
                 inherited_phenotype=Phenotype()):
        """Cells begin with a specified position, without velocity, task or destination."""
        # Position, Velocity and Acceleration vectors:
        self.pos = Point(float(x), float(y))
        self.vel = Vector(x_vel, y_vel)
        self.acl = Vector(0.0, 0.0)

        # Brad's Satisfaction
        self.keyList = []
        for i in range(0, 9):
            self.keyList.append([])
            for j in range(0, 9):
                self.keyList[i].append(False)

        # Phenotypes:
        self.phenotype = inherited_phenotype  # Stored for calc_variance's sake
        self.emRatio = inherited_phenotype.AI.emRatio  # Energy/Mass gain ratio
        self.div_energy = self.phenotype.AI.div_energy  # How much energy a cell needs to divide
        self.div_mass = self.phenotype.AI.div_mass  # How much mass a cell needs to divide
        self.walk_force = self.phenotype.Static.walk_force
        self.density = self.phenotype.AI.density
        self.mutation_chance = self.phenotype.AI.mutation_chance  # The likelihood of each phenotype mutating
        if self.phenotype.AI.color == None: self.color = Cell.colors.genColor()
        else: self.color = mutateColor(self.phenotype.AI.color)
        # Required for motion:
        self.energy = energy
        self.mass = mass
        self.exerted_force = Vector(0.0, 0.0)
        self.weight_management()

        # Required for logic:
        self.task = None
        self.destination = None
        self.destination_type = None

        # Task jumptable:
        self.TaskTable = {}
        self.TaskTable[None] = self.task_none
        self.TaskTable["FindingFood"] = self.task_finding_food
        self.TaskTable["GettingFood"] = self.task_getting_food
예제 #10
0
 def reverse(self, algorithm):
     new_alg = []
     for i in algorithm:
         if i == 'next':
             new_alg.append(i)
         else:
             new_alg.append(Point(-i.col, -i.row))
     return new_alg
예제 #11
0
def graham_angle(p1, p2):
    ''' Not exactly the angle of the vector P₁P₂ but something that preserves
    the order (actually it flips it backwards but that's a good thing):
        if ∠P₁P₂ < ∠P₁P₃ then graham_angle(p1, p2) > graham_angle(p1, p3)
    '''
    if p1 is p2:  # this can only happen if p1 and p2 is self.min_point
        return -1.01  # just to guarantee the starting point is the last one
    v = Point(p2.x - p1.x, p2.y - p1.y)
    # monotonic with the angle, and faster to compute
    return (v.x * abs(v.x)) / squared_norm(v)
예제 #12
0
def BoundingBox(points):
    xmin, ymin = points[0].x, points[0].y
    xmax, ymax = xmin, ymin

    for p in points:
        if p.x < xmin:
            xmin = p.x
        elif p.x > xmax:
            xmax = p.x
        if p.y < ymin:
            ymin = p.y
        elif p.y > ymax:
            ymax = p.y

    return [
        Point(xmin, ymin),
        Point(xmin, ymax),
        Point(xmax, ymax),
        Point(xmax, ymin)
    ]
예제 #13
0
파일: checker.py 프로젝트: Amwap/Checkers
    def __init__(self,
                 name=None,
                 ico="·",
                 team="neutral",
                 location=None,
                 matrix=None,
                 position=None):
        Figure.__init__(self)
        self.name = name
        self.ico = ico
        self.move_list = []
        self.team = team
        self.location = location  #top bottom
        self.position = position
        self.matrix = matrix
        self.priority = False
        self.algorithm = [
            Point(1, 1),
            Point(-1, 1),
            Point(-1, -1),
            Point(1, -1), "next",
            Point(1, 1),
            Point(1, -1)
        ]

        if location == "top":
            self.algorithm = self.reverse(self.algorithm)
예제 #14
0
def BoundingBoxDC(points):
    ''' points must be a list of Point, or whatever has both an x and a y
    member '''

    if not isinstance(points, list):
        raise TypeError('points must be a list of Point')

    # We need to add the first point to the end
    points.append(points[0])

    # We use a divide and conquer algorithm to find the extrema
    p_xmax = extremaDC(points, RIGHT)
    p_xmin = extremaDC(points, LEFT)
    p_ymax = extremaDC(points, UP)
    p_ymin = extremaDC(points, DOWN)

    xmin, xmax, ymin, ymax = p_xmin.x, p_xmax.x, p_ymin.y, p_ymax.y

    return [
        Point(xmin, ymin),
        Point(xmin, ymax),
        Point(xmax, ymax),
        Point(xmax, ymin)
    ]
예제 #15
0
    def task_finding_food(self):
        #closest piece of food
        close_food = World.food_at(self.pos, self.sight_range)
        #If there is any food within distance self.sight_range, get the closest one.
        if len(close_food) > 0:
            closest_food = min(
                close_food,
                key=partial(
                    reduce, call,
                    (attrgetter("pos"), attrgetter("distance_to"),
                     partial(
                         call,
                         self.pos))))  # food: self.pos.distance_to(food.pos))
        else:
            closest_food = None

        if len(close_food) == 0:
            """What the cell does should it be looking for food."""
            #If you can't see food, accelerate in a random direction.
            x = random.uniform(0, World.width)
            y = random.uniform(0, World.height)
            self.destination = Point(x, y)
            self.destination_type = "Exploration"
            self.calc_force()
        else:
            #If there is any food within distance SIGHT_RANGE, get the closest one.
            #closest_food = min(close_food, key = lambda food: self.pos.distance_to(food.pos))
            closest_food = min(
                close_food,
                key=partial(
                    reduce, call,
                    (attrgetter("pos"), attrgetter("distance_to"),
                     partial(
                         call,
                         self.pos))))  # food: self.pos.distance_to(food.pos))

            def stop_getting_food(food):
                """After the food gets eaten, stop trying to get it."""
                self.destination = self.destination_type = self.task = None

            self.task = "GettingFood"
            self.destination_type = "Food"
            #weakref.proxy calls stop_getting_food when the food is destroyed.
            self.destination = weakref.proxy(closest_food.pos,
                                             stop_getting_food)
            self.food_target = weakref.ref(closest_food)
예제 #16
0
        def fillinger(even=None, ico="·", uname="neutral", location=None):
            self.j += 1
            self.i = 0
            line = [None]
            for num in range(8):
                self.i += 1
                if (num % 2 == 0) is even or even == None:
                    line.append(FreeField(name="free", ico="·", team="free"))
                else:
                    new = Checker(name="checker",
                                  ico=ico,
                                  team=uname,
                                  location=location,
                                  matrix=self.matrix,
                                  position=Point(self.j, self.i))
                    line.append(new)
                    self.figure_set.append(new)

            return line
예제 #17
0
    def _calculate_pixel_colour(self, x, y):
        screen_pixel_position = Point(x - self.screen.width / 2, y - self.screen.height / 2, self.screen.distance)
        camera_to_pixel_vector = Vector.from_points(self.camera_position, screen_pixel_position)

        camera_to_pixel = Line(camera_to_pixel_vector, self.camera_position)

        intersection_points = []
        for rectangle in self.rectangles:
            intersection_point_for_current = rectangle.get_intersection_point(camera_to_pixel)
            if intersection_point_for_current:
                intersection_points.append((rectangle, intersection_point_for_current))

        if intersection_points:
            closest_intersection = min(intersection_points, key=lambda p: p[1].distance_to(self.camera_position))
            illumination = self._calculate_illumination(*closest_intersection)
            if illumination:
                return self._blinn_phong_colour(illumination)

        return self.background_colour
예제 #18
0
	def __init__(self, x, y,  mass=0.3, energy=0.1, x_vel=0.0, y_vel=0.0, inherited_phenotype=Phenotype()):
		"""Cells begin with a specified position, without velocity, task or destination."""
		# Position, Velocity and Acceleration vectors:
		self.pos = Point(float(x), float(y))
		self.vel = Vector(x_vel, y_vel)
		self.acl = Vector(0.0, 0.0)

                # Brad's Satisfaction
                self.keyList = []
                for i in range(0,9):
                        self.keyList.append([])
                        for j in range (0,9):
                                self.keyList[i].append(False)

		# Phenotypes:
		self.phenotype		= inherited_phenotype		# Stored for calc_variance's sake
		self.emRatio		= inherited_phenotype.AI.emRatio	# Energy/Mass gain ratio
		self.div_energy		= self.phenotype.AI.div_energy	# How much energy a cell needs to divide
		self.div_mass		= self.phenotype.AI.div_mass		# How much mass a cell needs to divide
		self.walk_force		= self.phenotype.Static.walk_force
		self.density		= self.phenotype.AI.density
		self.mutation_chance	= self.phenotype.AI.mutation_chance	# The likelihood of each phenotype mutating
		if self.phenotype.AI.color == None: self.color = Cell.colors.genColor()
		else: self.color = mutateColor(self.phenotype.AI.color)
		# Required for motion:
		self.energy		= energy
		self.mass		= mass
		self.exerted_force	= Vector(0.0, 0.0)
		self.weight_management()

		# Required for logic:
		self.task		= None
		self.destination	= None
		self.destination_type	= None

		# Task jumptable:
		self.TaskTable			= {}
		self.TaskTable[None]		= self.task_none
		self.TaskTable["FindingFood"]	= self.task_finding_food
		self.TaskTable["GettingFood"]	= self.task_getting_food
예제 #19
0
    def paintEvent(self, _: QPaintEvent):
        qp = QPainter(self)

        qp.setPen(Qt.white)
        qp.setBrush(Qt.white)
        qp.drawRect(self.rect())

        qp.drawImage(0, 0, self.img)

        center = Point(self.width() / 2, self.height() / 2)
        p1 = center + Vector(120, self.angle1).to_point()
        p2 = p1 + Vector(100, self.angle2).to_point()
        qp.setPen(QPen(Qt.black, 2))
        qp.drawLine(*center, *p1)
        qp.drawLine(*p1, *p2)

        self.ip.setPen(QPen(Qt.black, 2))
        self.ip.drawPoint(*p2)

        if self.last_point:
            self.ip.drawLine(*self.last_point, *p2)
        self.last_point = p2
예제 #20
0
def left_click_handler(event):
    global data

    if event.xdata is None or event.ydata is None:
        return

    point = Point(x=event.xdata, y=event.ydata)
    for p in data:
        # check if we clicked over a point, so we need to delete it
        if plot_distance_in_points(point, p) < plot_data.marker_radius:
            data.remove(p)
            break
    else:  # if we didn't click over an existing point, we create a new one
        data.append(point)

    data.sort(key=lambda p: p.y, reverse=True)

    plot_data.clean_plot()

    if data:
        ax.scatter(*zip(*data), color='C0', zorder=10, linewidth=0)
        excluded = data[-1]
        ax.scatter(*excluded, color='C1', zorder=10, linewidth=0)
예제 #21
0
파일: cells.py 프로젝트: WVWVWV/Cellular-II
	def __init__(self, x, y,  mass=0.3, energy=0.1, x_vel=0.0, y_vel=0.0, Phenotype=[2.0, 0.001, 0.5,0.6, 0.005, None, 0.0]):
		"""Cells begin with a specified position, without velocity, task or destination."""
		# Position, Velocity and Acceleration vectors:
		self.pos = Point(float(x), float(y))
		self.vel = Vector(x_vel, y_vel)
		self.acl = Vector(0.0, 0.0)

		# Phenotypes:
		self.phenotype			= Phenotype		# Stored for calc_variance's sake
		self.emRatio			= Phenotype[0]		# Energy/Mass gain ratio
		self.walk_force			= Phenotype[1]
		self.div_energy			= Phenotype[2]		# How much energy a cell needs to divide
		self.div_mass			= Phenotype[3]		# How much mass a cell needs to divide
		self.density			= Phenotype[4]
		if Phenotype[5] == None:
			self.color = random_color()
			Phenotype[5] = self.color
		else:	self.color		= Phenotype[5]
		self.mutation_chance		= Phenotype[6]		# The likelihood of each phenotype mutating
		
		# Required for motion:
		self.energy		 = energy
		self.mass		 = mass
		self.exerted_force	 = Vector(0.0, 0.0)
		self.weight_management()

		# Required for logic:
		self.task		 = None
		self.destination	 = None
		self.destination_type	 = None

		# Task jumptable:
		self.TaskTable			= {}
		self.TaskTable[None]		= self.task_none
		self.TaskTable["FindingFood"]	= self.task_finding_food
		self.TaskTable["GettingFood"]	= self.task_getting_food
예제 #22
0
 def test_Point(self):
     test_p = Point(2,4)
     self.assertEqual(test_p + 3, Point(5,7))
     pass
예제 #23
0
 def __init__(self, x, y):
     self.energy = 0.5
     self.pos = Point(x, y)
     self.pos.fit_to_torus()
예제 #24
0
파일: cells.py 프로젝트: LandoSama/cellular
class Cell:
	def __init__(self, x, y, mass=0.3, energy=0.1, x_vel=0.0, y_vel=0.0):
		"""Cells begin with a specified position, without velocity, task or destination."""
		# Position, Velocity and Acceleration vectors:
		self.pos = Point(float(x), float(y))
		self.vel = Vector(x_vel, y_vel)
		self.acl = Vector(0.0, 0.0)

		# Arbitrary constants:
		self.density		= .005			# density is used to calculate radius

		# Required for motion:
		self.mass		 = 1
		self.walk_force		 = 0.001
		self.exerted_force	 = Vector(0.0, 0.0)
		self.weight_management()

		# Required for logic:
		self.task		 = None
		self.destination	 = None
		self.destination_type	 = None
		self.energy		 = energy

		# Task jumptable:
		self.TaskTable			= {}
		self.TaskTable[None]		= self.task_none
		self.TaskTable["FindingFood"]	= self.task_finding_food
		self.TaskTable["GettingFood"]	= self.task_getting_food

		# Misc:
		self.color = random_color()

#	"Task" functions, i.e. the cell's activities during each tick, depending on its task.

	def task_none(self):
		"""What the cell does should it have no task."""
		self.task = "FindingFood"

	def task_finding_food(self):
		#closest piece of food
		close_food = environment.Environment().food_at(self.pos, self.sight_range)
		#If there is any food within distance self.sight_range, get the closest one.
		if len(close_food) > 0:
			closest_food = min(close_food, key = partial(reduce, call, (attrgetter("pos"), attrgetter("distance_to"), partial(call, self.pos))))# food: self.pos.distance_to(food.pos))
		else: closest_food = None

		if len(close_food) == 0:
			"""What the cell does should it be looking for food."""
			#If you can't see food, accelerate in a random direction.
			x = random.uniform(0, environment.Environment().width)
			y = random.uniform(0, environment.Environment().height)
			self.destination = Point(x, y)
			self.destination_type  = "Exploration"
			self.calc_force()
		else:
			#If there is any food within distance SIGHT_RANGE, get the closest one.
			#closest_food = min(close_food, key = lambda food: self.pos.distance_to(food.pos))
			closest_food = min(close_food, key = partial(reduce, call, (attrgetter("pos"), attrgetter("distance_to"), partial(call, self.pos))))# food: self.pos.distance_to(food.pos))
			
			def stop_getting_food(food):
				"""After the food gets eaten, stop trying to get it."""
				self.destination = self.destination_type = self.task = None
			self.task = "GettingFood"
			self.destination_type = "Food"
			#weakref.proxy calls stop_getting_food when the food is destroyed.
			self.destination = weakref.proxy(closest_food.pos, stop_getting_food)
			self.food_target = weakref.ref(closest_food)

	def task_getting_food(self):
		"""What the cell does when it has found food and is attempting to get it."""
		#assert(len(environment.Environment().food_at(self.destination, 0)) != 0)
		distance_to_destination = self.pos.distance_to(self.destination)
		print self.destination
		print distance_to_destination
		if distance_to_destination > self.distance_to_start_slowing_down():
			self.calc_force()
		
		for f in environment.Environment().food_at(self.pos, self.radius):
			self.eat(f)
		#if distance_to_destination <= self.radius:
		#	self.eat(self.food_target())

	def update_coords(self):
		"""Updates the cell's position, velocity and acceleration in that order."""
		prev_vel = Vector(self.vel.x, self.vel.y)
		
		self.pos += self.vel
		self.vel += self.acl
		#acl is change in velocity
		#displacement = (prev_vel + self.exerted_force/self.mass/2)
		#self.energy -= self.exerted_force*displacement
		#self.energy -= self.exerted_force*prev_vel
		self.acl = self.exerted_force - self.vel*abs(self.vel)*environment.Environment().resistance*(self.radius)/self.mass
		self.exerted_force = Vector(0.0,0.0)

	def calc_force(self):
		"""Cells calculate how much force they are exerting (prior to resistance)."""
		self.exerted_force = (self.destination - self.pos)*self.walk_force / abs(self.destination - self.pos)
		#self.exerted_force = (self.destination - self.pos)*self.walk_force / (abs(self.destination - self.pos)*self.mass)
		if self.energy > self.walk_force:
			self.energy -= self.walk_force*1.0
		else:
			self.mass -= self.walk_force*3.0

	"""Changes the cell's position based on its velocity, a.k.a. movement."""
	def distance_to_start_slowing_down(self):
		"""Calculates the distance from the destination that, once past,
		the cell ought to begin slowing down to reach its destination."""
		return (abs(self.vel) * self.mass) / (environment.Environment().resistance * self.radius)

	def eat(self, f):
		#for f in environment.Environment().food_at(self.pos, self.radius):
		self.energy += f.energy/2.0
		self.mass += f.energy/2.0
		environment.Environment().remove_food(f)
		#The above line automatically resets our task and destination by calling stop_getting_food()

	def weight_management(self):
		self.radius = ( 3.0*self.mass*self.density / (4.0*math.pi) )**(1/2.0)
		self.sight_range = .2 + self.radius

	def life_and_death(self):
		if self.energy >= 0.5 and self.mass >= 0.6: #hardcoded threshold
			#stats of both babbyz
			newMass		 = self.mass/2.0
			newEnergy	 = (self.energy - 3.0)/2.0

			#make babby 1
			x1 = random.uniform(self.pos.x-0.01,self.pos.x+0.01)
			y1 = random.uniform(self.pos.y-0.01,self.pos.y+0.01)
			environment.Environment().add_cells_at_location(x1,y1,newMass,newEnergy,self.vel.x,self.vel.y)
			
			#make babby 2
			x2 = random.uniform(self.pos.x-0.01,self.pos.x+0.01)
			y2 = random.uniform(self.pos.y-0.01,self.pos.y+0.01)
			environment.Environment().add_cells_at_location(x2,y2,newMass,newEnergy,self.vel.x,self.vel.y)
						
			#make two cells at slightly different positions
			environment.Environment().remove_cell(self)
		elif self.mass <= 0.1:
			environment.Environment().kill_cell(self)
			
	def one_tick(self):
		"""What a cell does every arbitrary unit of time."""
		self.TaskTable[self.task]()
		self.update_coords()
		self.weight_management()
		self.life_and_death()
예제 #25
0
파일: main.py 프로젝트: codebox/pytrace
from renderer import ImageRenderer
from scene import Screen
from scene_builder import SceneBuilder
from vector import Point

if __name__ == '__main__':
    SCREEN_WIDTH = 400
    SCREEN_HEIGHT = 200
    SCREEN_DISTANCE = 400
    screen = Screen(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_DISTANCE)

    CAMERA_X = 0
    CAMERA_Y = SCREEN_HEIGHT
    CAMERA_Z = 0
    camera_position = Point(CAMERA_X, CAMERA_Y, CAMERA_Z)

    SCALE = 1

    scene = SceneBuilder(screen, camera_position, SCALE).build_flat_plane()

    ImageRenderer(scene).render('trace.png')
예제 #26
0
	def __init__(self, x, y):
		self.energy = 0.5
		self.pos = Point(x,y)
		self.pos.fit_to_torus()
예제 #27
0
from level import Level
from obstacle import Obstacle
from vector import Point

WIDTH: int = 640
HEIGHT: int = 480

POPULATION_SIZE: int = 1000
CHECKPOINT_OPTIMIZATION_ROUNDS: int = 20

LEVEL: Level = [
    Level(Point(WIDTH / 2, HEIGHT - 10), Point(WIDTH / 2, 10), [
        Obstacle(Point(0, HEIGHT / 2 - 5), Point(WIDTH * 3 / 4,
                                                 HEIGHT / 2 + 5))
    ], []),
    Level(Point(WIDTH / 8, HEIGHT * 3 / 4), Point(WIDTH / 8, HEIGHT / 4), [
        Obstacle(Point(0, HEIGHT / 2 - 5), Point(WIDTH * 7 / 8,
                                                 HEIGHT / 2 + 5))
    ], [Point(WIDTH * 15 / 16, HEIGHT / 2)]),
    Level(Point(WIDTH / 2, HEIGHT - 10), Point(WIDTH / 2, 10), [
        Obstacle(Point(0, HEIGHT / 4 - 5),
                 Point(WIDTH * 3 / 4 + 5, HEIGHT / 4 + 5)),
        Obstacle(Point(WIDTH * 3 / 4 - 5, HEIGHT / 4 - 5),
                 Point(WIDTH * 3 / 4 + 5, HEIGHT * 5 / 8 - 5)),
        Obstacle(Point(WIDTH * 3 / 8, HEIGHT * 5 / 8 - 5),
                 Point(WIDTH * 3 / 4 + 5, HEIGHT * 5 / 8 + 5)),
        Obstacle(Point(WIDTH / 4, HEIGHT * 3 / 8 - 5),
                 Point(WIDTH * 5 / 8, HEIGHT * 3 / 8 + 5)),
        Obstacle(Point(WIDTH / 4 - 5, HEIGHT * 3 / 8 - 5),
                 Point(WIDTH / 4 + 5, HEIGHT * 3 / 4 + 5)),
        Obstacle(Point(WIDTH / 4 - 5, HEIGHT * 3 / 4 - 5),
예제 #28
0
    def move_like_virus(self):
        if not self.bool_moving:  #if the cell isn't moving
            self.ticksLeft = 0  #then it's at the beginning - it's made 0 steps
            #            print "Not movin', trying to move... "
            self.bool_moving = True  #get ready to moves
            #            print "pos = ", self.pos
            current_pos = self.pos  #placeholder variable - bad habits from Java
            ref_pos = Point(
                0, 0)  #prepare a reference frame based on current location
            self.moving_path_as_string = "x^", self.curveTendency
            #            print "future path = ", self.moving_path_as_string
            #end_of_eY = environment.Environment().height - current_pos.y
            #end_of_eX = environment.Environment().width - current_pos.x
            distanceTraveled = 0  #we haven't gone anywhere yet
            timeLeft = int(self.lifeSpan /
                           3)  #viruses choose three paths in their life
            #            print "time left = ", timeLeft
            while timeLeft > 0:  #we begin adding positions in the virus' trajectory
                #nextPos_ref is the projected position based on a null reference frame
                nextPos_ref = Point(
                    ref_pos.x + self.driftSpeed,
                    ((ref_pos.x + self.driftSpeed)**self.curveTendency))
                #print "for reference... ", nextPos_ref
                #realPos adds the reference frame position to the actual position
                realPos = Point(current_pos.x + nextPos_ref.x,
                                current_pos.y + nextPos_ref.y)
                #print "adding... ", realPos
                self.moving_path.append(realPos)
                #the reference doesn't reset, but builds upon itself
                ref_pos = nextPos_ref
                #decrease steps left
                timeLeft -= 1
            #now that movement has been predicted, we prepare for next movement
            #change curve which is being followed
            self.curveTendency = random.randint(1, 3)
            multi = random.uniform(-1, 1)
            #change direction possibly
            self.driftSpeed = self.maxSpeed * multi / abs(multi)
            #self.driftSpeed = random.uniform(-self.maxSpeed, self.maxSpeed)
            #            print "curve = ", self.curveTendency
            #            print "drift = ", self.driftSpeed
            #these should ever be used, but just in case
            if self.curveTendency > 10:
                self.curveTendency = 3
            elif self.curveTendency <= 0:
                self.curveTendency = 1
        else:  #we're moving!
            #            print "moving now"
            ticksMax = len(self.moving_path)  #how many steps are to be taken?
            #print "path = ", self.moving_path
            #            print "length of path = ", ticksMax
            #            print "ticks left = ",  self.ticksLeft

            #change x and y
            self.pos.x = self.moving_path[self.ticksLeft].x
            self.pos.y = self.moving_path[self.ticksLeft].y
            #            print "moving to ", self.pos

            #remeber ticksLeft? Here it's used
            self.ticksLeft += 1
            if self.ticksLeft == ticksMax:  #when we've reached the end
                self.bool_moving = False  #stop
                self.moving_path = []  #empty the path
                ticksLeft = 0  #reset ticksLeft
예제 #29
0
파일: cells.py 프로젝트: WVWVWV/Cellular-II
class Cell:
	def __init__(self, x, y,  mass=0.3, energy=0.1, x_vel=0.0, y_vel=0.0, Phenotype=[2.0, 0.001, 0.5,0.6, 0.005, None, 0.0]):
		"""Cells begin with a specified position, without velocity, task or destination."""
		# Position, Velocity and Acceleration vectors:
		self.pos = Point(float(x), float(y))
		self.vel = Vector(x_vel, y_vel)
		self.acl = Vector(0.0, 0.0)

		# Phenotypes:
		self.phenotype			= Phenotype		# Stored for calc_variance's sake
		self.emRatio			= Phenotype[0]		# Energy/Mass gain ratio
		self.walk_force			= Phenotype[1]
		self.div_energy			= Phenotype[2]		# How much energy a cell needs to divide
		self.div_mass			= Phenotype[3]		# How much mass a cell needs to divide
		self.density			= Phenotype[4]
		if Phenotype[5] == None:
			self.color = random_color()
			Phenotype[5] = self.color
		else:	self.color		= Phenotype[5]
		self.mutation_chance		= Phenotype[6]		# The likelihood of each phenotype mutating
		
		# Required for motion:
		self.energy		 = energy
		self.mass		 = mass
		self.exerted_force	 = Vector(0.0, 0.0)
		self.weight_management()

		# Required for logic:
		self.task		 = None
		self.destination	 = None
		self.destination_type	 = None

		# Task jumptable:
		self.TaskTable			= {}
		self.TaskTable[None]		= self.task_none
		self.TaskTable["FindingFood"]	= self.task_finding_food
		self.TaskTable["GettingFood"]	= self.task_getting_food

	#"Task" functions, i.e. the cell's activities during each tick, depending on its task.
	def task_none(self):
		"""What the cell does should it have no task."""
		self.task = "FindingFood"

	def task_finding_food(self):
		#closest piece of food
		close_food = environment.Environment().food_at(self.pos, self.sight_range)
		#If there is any food within distance self.sight_range, get the closest one.
		if len(close_food) > 0:
			closest_food = min(close_food, key = partial(reduce, call, (attrgetter("pos"), attrgetter("distance_to"), partial(call, self.pos))))# food: self.pos.distance_to(food.pos))
		else: closest_food = None

		if len(close_food) == 0:
			"""What the cell does should it be looking for food."""
			#If you can't see food, accelerate in a random direction.
			x = random.uniform(0, environment.Environment().width)
			y = random.uniform(0, environment.Environment().height)
			self.destination = Point(x, y)
			self.destination_type  = "Exploration"
			self.calc_force()
		else:
			#If there is any food within distance SIGHT_RANGE, get the closest one.
			#closest_food = min(close_food, key = lambda food: self.pos.distance_to(food.pos))
			closest_food = min(close_food, key = partial(reduce, call, (attrgetter("pos"), attrgetter("distance_to"), partial(call, self.pos))))# food: self.pos.distance_to(food.pos))
			
			def stop_getting_food(food):
				"""After the food gets eaten, stop trying to get it."""
				self.destination = self.destination_type = self.task = None
			self.task = "GettingFood"
			self.destination_type = "Food"
			#weakref.proxy calls stop_getting_food when the food is destroyed.
			self.destination = weakref.proxy(closest_food.pos, stop_getting_food)
			self.food_target = weakref.ref(closest_food)

	def task_getting_food(self):
		"""What the cell does when it has found food and is attempting to get it."""
		#assert(len(environment.Environment().food_at(self.destination, 0)) != 0)
		distance_to_destination = self.pos.distance_to(self.destination)
		print self.destination
		print distance_to_destination
		if distance_to_destination > self.distance_to_start_slowing_down():
			self.calc_force()
		
		for f in environment.Environment().food_at(self.pos, self.radius):
			self.eat(f)
		#if distance_to_destination <= self.radius:
		#	self.eat(self.food_target())

	def update_coords(self):
		"""Updates the cell's position, velocity and acceleration in that order."""
		prev_vel = Vector(self.vel.x, self.vel.y)
		
		self.pos += self.vel
		self.vel += self.acl
		#acl is change in velocity
		#displacement = (prev_vel + self.exerted_force/self.mass/2)
		#self.energy -= self.exerted_force*displacement
		#self.energy -= self.exerted_force*prev_vel
		self.acl = self.exerted_force - self.vel*abs(self.vel)*environment.Environment().resistance*(self.radius)/self.mass
		self.exerted_force = Vector(0.0,0.0)

	def calc_force(self):
		"""Cells calculate how much force they are exerting (prior to resistance)."""
		self.exerted_force = (self.destination - self.pos)*self.walk_force / abs(self.destination - self.pos)
		#self.exerted_force = (self.destination - self.pos)*self.walk_force / (abs(self.destination - self.pos)*self.mass)
		if self.energy > self.walk_force:
			self.energy -= self.walk_force*1.0
		else:
			self.mass -= self.walk_force*3.0

	def distance_to_start_slowing_down(self):
		"""Calculates the distance from the destination that, once past,
		the cell ought to begin slowing down to reach its destination."""
		return (abs(self.vel) * self.mass) / (environment.Environment().resistance * self.radius)

	def eat(self, f):
		"""Updates energy and mass according to set emRatio value and removes food item."""
		#for f in environment.Environment().food_at(self.pos, self.radius):
		self.energy += f.energy/self.emRatio
		self.mass += f.energy - (f.energy/self.emRatio)
		environment.Environment().remove_food(f)
		#The above line automatically resets our task and destination by calling stop_getting_food()

	def weight_management(self):
		"""Updates radius and sight range according to mass and density"""
		self.radius = ( 3.0*self.mass*self.density / (4.0*math.pi) )**(1/2.0)
		self.sight_range = .2 + self.radius

	def calculate_variance(self):
		"""Setting variance for child cell. Called when cell duplicates""" #Currently only color varaince 
		newphenotype = []
		##Below code needs to be rewritten##
		###SOLUTION: Use fraction of acceptable margin as argument for randint modification###
		newcolor = (self.phenotype[5][0] + random.randint(-15,15),self.phenotype[5][1] + random.randint(-15,15), +\
			    self.phenotype[5][2] + random.randint(-15,15))
		
		while (newcolor[0]+newcolor[1]+newcolor[2])/3>150 or newcolor[0]<0 or newcolor[0]>255 or newcolor[1]<0 or newcolor[1]>255 or newcolor[2]<0 or newcolor[2]>255:
			print newcolor,"sucks! Its average is either above 150 or one of its color values is impossible!"
			newcolor = (self.phenotype[5][0]+random.randint(-15,15), int(self.phenotype[5][1]+random.randint(-15,15)/1.15), self.phenotype[5][2]+random.randint(-15,15))
		print newcolor,"should be fine, and if it isn't, F**K."
		for t in self.phenotype[:5]:	newphenotype.append(t)
		newphenotype.append(newcolor)
		for t in self.phenotype[6:]:	newphenotype.append(t)
		return newphenotype

	def life_and_death(self):
		"""Checks if cell mass is great enough for division or low enough to cause death.""" 
		"""Brings new cells into existance or removes cell if conditions are true."""
		if self.mass >= self.div_mass and self.energy >= self.div_energy:
			##Removed Jack-ese##			
			#Statistics for child cells
			newMass		= self.mass/self.emRatio
			newEnergy	= (self.energy - 3.0)/self.emRatio

			#Create child 1
			x1 = random.uniform(self.pos.x-0.01,self.pos.x+0.01)
			y1 = random.uniform(self.pos.y-0.01,self.pos.y+0.01)
			newPhenotype1	= self.calculate_variance()
			environment.Environment().cell_list.append(Cell(x1,y1,newMass,newEnergy,self.vel.x,self.vel.y,newPhenotype1))
			
			#Create child 2
			x2 = random.uniform(self.pos.x-0.01,self.pos.x+0.01)
			y2 = random.uniform(self.pos.y-0.01,self.pos.y+0.01)
			newPhenotype2	= self.calculate_variance()
			environment.Environment().cell_list.append(Cell(x2,y2,newMass,newEnergy,self.vel.x,self.vel.y,newPhenotype2))
						
			#Instantiates children at slightly different positions
			environment.Environment().remove_cell(self)
		#Kills cell
		elif self.mass <= 0.1:
			environment.Environment().kill_cell(self)
			
	def one_tick(self):
		"""What a cell does every arbitrary unit of time."""
		self.TaskTable[self.task]()
		self.update_coords()
		self.weight_management()
		self.life_and_death()
예제 #30
0
 def get_test_point(self) -> Point:
     return Point(1, 2, 3)
예제 #31
0
class Cell(object):
    colors = Colors()

    def __init__(self,
                 x,
                 y,
                 mass=0.3,
                 energy=0.1,
                 x_vel=0.0,
                 y_vel=0.0,
                 inherited_phenotype=Phenotype()):
        """Cells begin with a specified position, without velocity, task or destination."""
        # Position, Velocity and Acceleration vectors:
        self.pos = Point(float(x), float(y))
        self.vel = Vector(x_vel, y_vel)
        self.acl = Vector(0.0, 0.0)

        # Brad's Satisfaction
        self.keyList = []
        for i in range(0, 9):
            self.keyList.append([])
            for j in range(0, 9):
                self.keyList[i].append(False)

        # Phenotypes:
        self.phenotype = inherited_phenotype  # Stored for calc_variance's sake
        self.emRatio = inherited_phenotype.AI.emRatio  # Energy/Mass gain ratio
        self.div_energy = self.phenotype.AI.div_energy  # How much energy a cell needs to divide
        self.div_mass = self.phenotype.AI.div_mass  # How much mass a cell needs to divide
        self.walk_force = self.phenotype.Static.walk_force
        self.density = self.phenotype.AI.density
        self.mutation_chance = self.phenotype.AI.mutation_chance  # The likelihood of each phenotype mutating
        if self.phenotype.AI.color == None: self.color = Cell.colors.genColor()
        else: self.color = mutateColor(self.phenotype.AI.color)
        # Required for motion:
        self.energy = energy
        self.mass = mass
        self.exerted_force = Vector(0.0, 0.0)
        self.weight_management()

        # Required for logic:
        self.task = None
        self.destination = None
        self.destination_type = None

        # Task jumptable:
        self.TaskTable = {}
        self.TaskTable[None] = self.task_none
        self.TaskTable["FindingFood"] = self.task_finding_food
        self.TaskTable["GettingFood"] = self.task_getting_food

    #"Task" functions, i.e. the cell's activities during each tick, depending on its task.
    def task_none(self):
        """What the cell defaults to in the instance of having no task."""
        self.task = "FindingFood"

    def task_finding_food(self):
        #closest piece of food
        close_food = World.food_at(self.pos, self.sight_range)
        #If there is any food within distance self.sight_range, get the closest one.
        if len(close_food) > 0:
            closest_food = min(
                close_food,
                key=partial(
                    reduce, call,
                    (attrgetter("pos"), attrgetter("distance_to"),
                     partial(
                         call,
                         self.pos))))  # food: self.pos.distance_to(food.pos))
        else:
            closest_food = None

        if len(close_food) == 0:
            """What the cell does should it be looking for food."""
            #If you can't see food, accelerate in a random direction.
            x = random.uniform(0, World.width)
            y = random.uniform(0, World.height)
            self.destination = Point(x, y)
            self.destination_type = "Exploration"
            self.calc_force()
        else:
            #If there is any food within distance SIGHT_RANGE, get the closest one.
            #closest_food = min(close_food, key = lambda food: self.pos.distance_to(food.pos))
            closest_food = min(
                close_food,
                key=partial(
                    reduce, call,
                    (attrgetter("pos"), attrgetter("distance_to"),
                     partial(
                         call,
                         self.pos))))  # food: self.pos.distance_to(food.pos))

            def stop_getting_food(food):
                """After the food gets eaten, stop trying to get it."""
                self.destination = self.destination_type = self.task = None

            self.task = "GettingFood"
            self.destination_type = "Food"
            #weakref.proxy calls stop_getting_food when the food is destroyed.
            self.destination = weakref.proxy(closest_food.pos,
                                             stop_getting_food)
            self.food_target = weakref.ref(closest_food)

    def task_getting_food(self):
        """What the cell does when it has found food and is attempting to get it."""
        distance_to_destination = self.pos.distance_to(self.destination)
        if distance_to_destination > self.distance_to_start_slowing_down():
            self.calc_force()

        for f in World.food_at(self.pos, self.radius):
            self.eat(f)

    def update_coords(self):
        """Updates the cell's position, velocity and acceleration in that order."""
        prev_vel = Vector(self.vel.x, self.vel.y)
        self.pos += self.vel
        if numpy.isnan(self.pos.x):
            self.pos.x = random.uniform(0, World.width)
        if numpy.isnan(self.pos.y):
            self.pos.y = random.uniform(0, World.width)

        self.vel += self.acl
        self.acl = self.exerted_force - self.vel * abs(
            self.vel) * World.resistance * (self.radius) / self.mass
        self.exerted_force = Vector(0.0, 0.0)

    def calc_force(self):
        """Cells calculate how much force they are exerting (prior to resistance)."""
        self.exerted_force = (
            self.destination -
            self.pos) * self.walk_force / abs(self.destination - self.pos)
        if self.energy > self.walk_force:
            self.energy -= self.walk_force * 1.0
        else:
            self.mass -= self.walk_force * 3.0

    def distance_to_start_slowing_down(self):
        """Calculates the distance from the destination that, once past,
		the cell ought to begin slowing down to reach its destination."""
        return (abs(self.vel) * self.mass) / (World.resistance * self.radius)

    def eat(self, f):
        """Updates energy and mass according to set emRatio value and removes food item."""
        self.energy += f.energy / self.emRatio
        self.mass += f.energy - (f.energy / self.emRatio)
        World.remove_food(f)
        #The above line automatically resets our task and destination by calling stop_getting_food()

    def weight_management(self):
        """Updates radius and sight range according to mass and density"""
        self.radius = (3.0 * self.mass * self.density / (4.0 * math.pi))**(1 /
                                                                           2.0)
        self.sight_range = .2 + self.radius

    def determine_phenotype(self):
        """Setting variance for child cell. Called when cell duplicates"""
        self.phenotype.mutate_phenotype()

    def life_and_death(self):
        """Checks if cell mass is great enough for division or low enough to cause death."""
        """Brings new cells into existance or removes cell if conditions are true."""
        if self.mass >= self.div_mass and self.energy >= self.div_energy:
            #Statistics for child cells
            newMass = self.mass / self.emRatio
            newEnergy = (self.energy - 3.0) / self.emRatio

            #Create child 1
            x1 = random.uniform(self.pos.x - 0.01, self.pos.x + 0.01)
            y1 = random.uniform(self.pos.y - 0.01, self.pos.y + 0.01)
            self.determine_phenotype()
            World.cell_list.append(
                Cell(x1, y1, newMass, newEnergy, self.vel.x, self.vel.y,
                     self.phenotype))

            #Create child 2
            x2 = random.uniform(self.pos.x - 0.01, self.pos.x + 0.01)
            y2 = random.uniform(self.pos.y - 0.01, self.pos.y + 0.01)
            self.determine_phenotype()
            World.cell_list.append(
                Cell(x2, y2, newMass, newEnergy, self.vel.x, self.vel.y,
                     self.phenotype))

            #Instantiates children at slightly different positions
            World.remove_cell(self)
        #Kills cell
        elif self.mass <= 0.1:
            World.kill_cell(self)

    def one_tick(self):
        """What a cell does every arbitrary unit of time."""
        self.TaskTable[self.task]()
        self.update_coords()
        self.weight_management()
        self.life_and_death()

    def collideWith(self, foe):
        """assumed cells are colliding"""

        #get distance between cell radii as a vector
        selfPos = self.pos
        foePos = foe.pos
        xDiff = selfPos.x - foePos.x
        yDiff = selfPos.y - foePos.y
        dist = math.sqrt(xDiff**2 + yDiff**2)
        dist += 5
        distVec = Vector(xDiff, yDiff)
        distVec.x = round(distVec.x, 3)
        distVec.y = round(distVec.y, 3)
        unitVec = distVec / dist
        unitVec.x = round(unitVec.x, 3)
        unitVec.y = round(unitVec.y, 3)

        #make a force vector
        forcApp = 1 / dist
        forcApp = round(forcApp, 3)
        forcVec = unitVec * forcApp
        forcVec.x = round(forcVec.x, 3)
        forcVec.y = round(forcVec.y, 3)

        #apply the force vector to other cell
        #the target's acceration is changed
        #by F/target's mass

        targetPushVec = forcVec / foe.mass
        targetPushVec.x = round(targetPushVec.x, 3)
        targetPushVec.y = round(targetPushVec.y, 3)
        foe.acl += -targetPushVec

    def guessedKey(self, vKey):
        vKeyO = vKey % 10  #gets the number in the ones place in vKey
        vKeyT = (vKey - vKeyO) / 10  #gets the number in the tens place in vKey
        if self.keyList[vKeyT][
                vKeyO] == True:  #if the cell already knows the key
            return True
        randN = round(random.random(), 2) * 100
        randNO = randN % 10
        randNT = (randN - randNO) / 10
        #if the guess shares the same tens value and is at least 2 units away from the ones value
        if vKeyT == randNT and vKeyO < randNT + 2 and vKeyO >= randNT - 2:
            self.keyList[randNT][randNO] = True
            return True
        return False  #if this is reached, all guesses have failed

    def randExponent(curve, maximum):
        x = random.randint(0, maximum * 100.0) / 100.0
        base = (((maximum + curve) / curve))**(1.0 / maximum)
        y = curve * (base**x) - curve
        return y
예제 #32
0
from vector import Point
from bounding_box import BoundingBoxDC, BoundingBox

output_filename = 'rectangulo.txt'

if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument('vertices', type=str, help='Archivo de vértices')
    parser.add_argument('metodo', type=str, help='Método a usar')

    args = parser.parse_args()

    # Read the vertex file
    with open(args.vertices, 'r') as f:
        points = []
        for line in f.readlines():
            points.append(Point(*map(float, line.strip().split(','))))

    if args.metodo == 'inicial':
        box = BoundingBox(points)
    elif args.metodo == 'dyc':
        box = BoundingBoxDC(points)
    else:
        raise Exception('Método desconocido, los métodos pueden' \
                        'ser "inicial" o "dyc" ')

    with open(output_filename, 'w') as f:
        for point in box:
            f.write(str(point) + '\n')
예제 #33
0
class Cell(object):
	colors = Colors()
	def __init__(self, x, y,  mass=0.3, energy=0.1, x_vel=0.0, y_vel=0.0, inherited_phenotype=Phenotype()):
		"""Cells begin with a specified position, without velocity, task or destination."""
		# Position, Velocity and Acceleration vectors:
		self.pos = Point(float(x), float(y))
		self.vel = Vector(x_vel, y_vel)
		self.acl = Vector(0.0, 0.0)

                # Brad's Satisfaction
                self.keyList = []
                for i in range(0,9):
                        self.keyList.append([])
                        for j in range (0,9):
                                self.keyList[i].append(False)

		# Phenotypes:
		self.phenotype		= inherited_phenotype		# Stored for calc_variance's sake
		self.emRatio		= inherited_phenotype.AI.emRatio	# Energy/Mass gain ratio
		self.div_energy		= self.phenotype.AI.div_energy	# How much energy a cell needs to divide
		self.div_mass		= self.phenotype.AI.div_mass		# How much mass a cell needs to divide
		self.walk_force		= self.phenotype.Static.walk_force
		self.density		= self.phenotype.AI.density
		self.mutation_chance	= self.phenotype.AI.mutation_chance	# The likelihood of each phenotype mutating
		if self.phenotype.AI.color == None: self.color = Cell.colors.genColor()
		else: self.color = mutateColor(self.phenotype.AI.color)
		# Required for motion:
		self.energy		= energy
		self.mass		= mass
		self.exerted_force	= Vector(0.0, 0.0)
		self.weight_management()

		# Required for logic:
		self.task		= None
		self.destination	= None
		self.destination_type	= None

		# Task jumptable:
		self.TaskTable			= {}
		self.TaskTable[None]		= self.task_none
		self.TaskTable["FindingFood"]	= self.task_finding_food
		self.TaskTable["GettingFood"]	= self.task_getting_food

	#"Task" functions, i.e. the cell's activities during each tick, depending on its task.
	def task_none(self):
		"""What the cell defaults to in the instance of having no task."""
		self.task = "FindingFood"

	def task_finding_food(self):
		#closest piece of food
		close_food = World.food_at(self.pos, self.sight_range)
		#If there is any food within distance self.sight_range, get the closest one.
		if len(close_food) > 0:
			closest_food = min(close_food, key = partial(reduce, call, (attrgetter("pos"), attrgetter("distance_to"), partial(call, self.pos))))# food: self.pos.distance_to(food.pos))
		else: closest_food = None

		if len(close_food) == 0:
			"""What the cell does should it be looking for food."""
			#If you can't see food, accelerate in a random direction.
			x = random.uniform(0, World.width)
			y = random.uniform(0, World.height)
			self.destination = Point(x, y)
			self.destination_type  = "Exploration"
			self.calc_force()
		else:
			#If there is any food within distance SIGHT_RANGE, get the closest one.
			#closest_food = min(close_food, key = lambda food: self.pos.distance_to(food.pos))
			closest_food = min(close_food, key = partial(reduce, call, (attrgetter("pos"), attrgetter("distance_to"), partial(call, self.pos))))# food: self.pos.distance_to(food.pos))
			
			def stop_getting_food(food):
				"""After the food gets eaten, stop trying to get it."""
				self.destination = self.destination_type = self.task = None
			self.task = "GettingFood"
			self.destination_type = "Food"
			#weakref.proxy calls stop_getting_food when the food is destroyed.
			self.destination = weakref.proxy(closest_food.pos, stop_getting_food)
			self.food_target = weakref.ref(closest_food)

	def task_getting_food(self):
		"""What the cell does when it has found food and is attempting to get it."""
		distance_to_destination = self.pos.distance_to(self.destination)
		if distance_to_destination > self.distance_to_start_slowing_down():
			self.calc_force()
		
		for f in World.food_at(self.pos, self.radius):
			self.eat(f)

	def update_coords(self):
		"""Updates the cell's position, velocity and acceleration in that order."""
		prev_vel = Vector(self.vel.x, self.vel.y)
		self.pos += self.vel
		if numpy.isnan(self.pos.x):
			self.pos.x = random.uniform(0,World.width)
		if numpy.isnan(self.pos.y):
			self.pos.y = random.uniform(0,World.width)
			
		self.vel += self.acl
		self.acl = self.exerted_force - self.vel*abs(self.vel)*World.resistance*(self.radius)/self.mass
		self.exerted_force = Vector(0.0,0.0)

	def calc_force(self):
		"""Cells calculate how much force they are exerting (prior to resistance)."""
		self.exerted_force = (self.destination - self.pos)*self.walk_force / abs(self.destination - self.pos)
		if self.energy > self.walk_force:
			self.energy -= self.walk_force*1.0
		else:
			self.mass -= self.walk_force*3.0

	def distance_to_start_slowing_down(self):
		"""Calculates the distance from the destination that, once past,
		the cell ought to begin slowing down to reach its destination."""
		return (abs(self.vel) * self.mass) / (World.resistance * self.radius)

	def eat(self, f):
		"""Updates energy and mass according to set emRatio value and removes food item."""
		self.energy += f.energy/self.emRatio
		self.mass += f.energy - (f.energy/self.emRatio)
		World.remove_food(f)
		#The above line automatically resets our task and destination by calling stop_getting_food()

	def weight_management(self):
		"""Updates radius and sight range according to mass and density"""
		self.radius = ( 3.0*self.mass*self.density / (4.0*math.pi) )**(1/2.0)
		self.sight_range = .2 + self.radius
	
	def determine_phenotype(self):
		"""Setting variance for child cell. Called when cell duplicates"""
		self.phenotype.mutate_phenotype() 

	def life_and_death(self):
		"""Checks if cell mass is great enough for division or low enough to cause death.""" 
		"""Brings new cells into existance or removes cell if conditions are true."""
		if self.mass >= self.div_mass and self.energy >= self.div_energy:		
			#Statistics for child cells
			newMass		= self.mass/self.emRatio
			newEnergy	= (self.energy - 3.0)/self.emRatio

			#Create child 1
			x1 = random.uniform(self.pos.x-0.01,self.pos.x+0.01)
			y1 = random.uniform(self.pos.y-0.01,self.pos.y+0.01)
			self.determine_phenotype()
			World.cell_list.append(Cell(x1,y1,newMass,newEnergy,self.vel.x,self.vel.y,self.phenotype))
			
			#Create child 2
			x2 = random.uniform(self.pos.x-0.01,self.pos.x+0.01)
			y2 = random.uniform(self.pos.y-0.01,self.pos.y+0.01)
			self.determine_phenotype()
			World.cell_list.append(Cell(x2,y2,newMass,newEnergy,self.vel.x,self.vel.y,self.phenotype))
						
			#Instantiates children at slightly different positions
			World.remove_cell(self)
		#Kills cell
		elif self.mass <= 0.1:
                        World.kill_cell(self)

        		
	def one_tick(self):
		"""What a cell does every arbitrary unit of time."""
		self.TaskTable[self.task]()
		self.update_coords()
		self.weight_management()
		self.life_and_death()
                
        def collideWith(self, foe):
                """assumed cells are colliding"""
	
	#get distance between cell radii as a vector
		selfPos = self.pos
		foePos = foe.pos
		xDiff = selfPos.x - foePos.x
		yDiff = selfPos.y - foePos.y
		dist = math.sqrt(xDiff**2 + yDiff**2)
                dist += 5
		distVec = Vector(xDiff, yDiff)
		distVec.x = round(distVec.x,3)
		distVec.y = round(distVec.y,3)
		unitVec = distVec/dist
		unitVec.x = round(unitVec.x, 3)
		unitVec.y = round(unitVec.y, 3)

	#make a force vector
		forcApp = 1/dist
		forcApp = round(forcApp, 3)
		forcVec = unitVec * forcApp
		forcVec.x = round(forcVec.x, 3)
		forcVec.y = round(forcVec.y, 3)

	#apply the force vector to other cell
		#the target's acceration is changed
		#by F/target's mass
 		
		targetPushVec = forcVec/foe.mass
		targetPushVec.x = round(targetPushVec.x, 3)
		targetPushVec.y = round(targetPushVec.y, 3)
		foe.acl += -targetPushVec

        def guessedKey(self, vKey):
                vKeyO = vKey % 10 #gets the number in the ones place in vKey
                vKeyT = (vKey - vKeyO)/10 #gets the number in the tens place in vKey
                if self.keyList[vKeyT][vKeyO] == True : #if the cell already knows the key
                        return True
                randN = round(random.random(),2)*100
                randNO = randN % 10
                randNT = (randN - randNO)/10
                #if the guess shares the same tens value and is at least 2 units away from the ones value
                if vKeyT == randNT and vKeyO < randNT + 2 and vKeyO >= randNT - 2:
                        self.keyList[randNT][randNO] = True
                        return True
                return False #if this is reached, all guesses have failed
                
	def randExponent(curve,maximum):
		x=random.randint(0,maximum*100.0)/100.0
		base=(((maximum+curve)/curve))**(1.0/maximum)
		y=curve*(base**x)-curve
		return y
예제 #34
0
        self.image.show()

    def save(self, filepath):
        if self.image is None:
            raise Exception("Can't save, call render() first")
        self.image.save(filepath)

    def image_coordinate(self, space_coord):
        x, y = space_coord.x, space_coord.y
        # y direction is opposite
        return Point(
            self.origin_x + x * self.cell_size,
            self.origin_y - y * self.cell_size
        )

    def clear(self):
        del self._draw


if __name__ == '__main__':
    g = Space2d(400, 400, 200, 200, 25)
    p1 = Point.origin()
    p2 = Point(1.1, 2.5)
    p3 = Point(4, 4)
    p4 = Point(3, 2)
    g.arrow(p1, p2)
    g.render()
    g.arrow(p1, p3, 'red')
    g.arrow(p1, p4)
    g.save('vectors.png')