class DblockNas(SearchAlgorithm): """DnetNas. :param search_space: input search_space :type: SeachSpace """ config = DblockNasConfig() def __init__(self, search_space=None, **kwargs): """Init DnetNas.""" super(DblockNas, self).__init__(search_space, **kwargs) # ea or random self.max_sample = self.config.range.max_sample self.min_sample = self.config.range.min_sample self.sample_count = 0 logging.info("inited DblockNas") self.pareto_front = ParetoFront(self.config.pareto.object_count, self.config.pareto.max_object_ids) self._best_desc_file = 'nas_model_desc.json' @property def is_completed(self): """Check if NAS is finished.""" return self.sample_count > self.max_sample def search(self): """Search in search_space and return a sample.""" sample = {} while sample is None or 'code' not in sample: # pareto_dict = self.pareto_front.get_pareto_front() # pareto_list = list(pareto_dict.values()) sample_desc = self.search_space.sample() sample = self.codec.encode(sample_desc) if not self.pareto_front._add_to_board(id=self.sample_count + 1, config=sample): sample = None self.sample_count += 1 sample_desc = self.codec.decode(sample) logging.info(f"sample: {sample_desc['network.backbone.encoding']}") return dict(worker_id=self.sample_count, encoded_desc=sample_desc) def update(self, record): """Use train and evaluate result to update algorithm. :param performance: performance value from trainer or evaluator """ perf = record.get("rewards") worker_id = record.get("worker_id") logging.info("update performance={}".format(perf)) self.pareto_front.add_pareto_score(worker_id, perf) @property def max_samples(self): """Get max samples number.""" return self.max_sample
def __init__(self, search_space=None, **kwargs): """Init DnetNas.""" super(DblockNas, self).__init__(search_space, **kwargs) # ea or random self.max_sample = self.config.range.max_sample self.min_sample = self.config.range.min_sample self.sample_count = 0 logging.info("inited DblockNas") self.pareto_front = ParetoFront(self.config.pareto.object_count, self.config.pareto.max_object_ids) self._best_desc_file = 'nas_model_desc.json'
def __init__(self, search_space=None, **kwargs): """Init BackboneNas.""" super(BackboneNas, self).__init__(search_space, **kwargs) # ea or random self.num_mutate = self.config.policy.num_mutate self.random_ratio = self.config.policy.random_ratio self.max_sample = self.config.range.max_sample self.min_sample = self.config.range.min_sample self.sample_count = 0 logging.info("inited BackboneNas") self.pareto_front = ParetoFront(self.config.pareto.object_count, self.config.pareto.max_object_ids) self._best_desc_file = 'nas_model_desc.json'
def __init__(self, search_space=None, **kwargs): """Init DnetNas.""" super(DnetNas, self).__init__(search_space, **kwargs) # ea or random self.num_mutate = self.config.policy.num_mutate self.random_ratio = self.config.policy.random_ratio self.max_sample = self.config.range.max_sample self.min_sample = self.config.range.min_sample self.sample_count = 0 logging.info("inited DnetNas") self.pareto_front = ParetoFront(self.config.pareto.object_count, self.config.pareto.max_object_ids) self._best_desc_file = 'nas_model_desc.json' block_nas_folder = ModelConfig.models_folder.format( local_base_path=self.local_base_path) logging.info(f'folder: {block_nas_folder}') base_reports = ReportServer().load_records_from_model_folder( block_nas_folder) logging.info(f'base_reports: {base_reports}') self.base_block = base_reports[0].desc['backbone']['encoding'].split( '_')[0]
class BackboneNas(SearchAlgorithm): """BackboneNas. :param search_space: input search_space :type: SeachSpace """ config = BackboneNasConfig() def __init__(self, search_space=None, **kwargs): """Init BackboneNas.""" super(BackboneNas, self).__init__(search_space, **kwargs) # ea or random self.num_mutate = self.config.policy.num_mutate self.random_ratio = self.config.policy.random_ratio self.max_sample = self.config.range.max_sample self.min_sample = self.config.range.min_sample self.sample_count = 0 logging.info("inited BackboneNas") self.pareto_front = ParetoFront(self.config.pareto.object_count, self.config.pareto.max_object_ids) self._best_desc_file = 'nas_model_desc.json' @property def is_completed(self): """Check if NAS is finished.""" return self.sample_count > self.max_sample def search(self): """Search in search_space and return a sample.""" sample = {} while sample is None or 'code' not in sample: pareto_dict = self.pareto_front.get_pareto_front() pareto_list = list(pareto_dict.values()) if self.pareto_front.size < self.min_sample or random.random( ) < self.random_ratio or len(pareto_list) == 0: sample_desc = self.search_space.sample() sample = self.codec.encode(sample_desc) else: sample = pareto_list[0] if sample is not None and 'code' in sample: code = sample['code'] code = self.ea_sample(code) sample['code'] = code if not self.pareto_front._add_to_board(id=self.sample_count + 1, config=sample): sample = None self.sample_count += 1 logging.info(sample) sample_desc = self.codec.decode(sample) print(sample_desc) return dict(worker_id=self.sample_count, encoded_desc=sample_desc) def random_sample(self): """Random sample from search_space.""" sample_desc = self.search_space.sample() sample = self.codec.encode(sample_desc, is_random=True) return sample def ea_sample(self, code): """Use EA op to change a arch code. :param code: list of code for arch :type code: list :return: changed code :rtype: list """ new_arch = code.copy() self._insert(new_arch) self._remove(new_arch) self._swap(new_arch[0], self.num_mutate // 2) self._swap(new_arch[1], self.num_mutate // 2) return new_arch def update(self, record): """Use train and evaluate result to update algorithm. :param performance: performance value from trainer or evaluator """ perf = record.get("original_rewards") worker_id = record.get("worker_id") logging.info("update performance={}".format(perf)) self.pareto_front.add_pareto_score(worker_id, perf) def _insert(self, arch): """Random insert to arch code. :param arch: input arch code :type arch: list :return: changed arch code :rtype: list """ idx = np.random.randint(low=0, high=len(arch[0])) arch[0].insert(idx, 1) idx = np.random.randint(low=0, high=len(arch[1])) arch[1].insert(idx, 1) return arch def _remove(self, arch): """Random remove one from arch code. :param arch: input arch code :type arch: list :return: changed arch code :rtype: list """ # random pop arch[0] ones_index = [i for i, char in enumerate(arch[0]) if char == 1] idx = random.choice(ones_index) arch[0].pop(idx) # random pop arch[1] ones_index = [i for i, char in enumerate(arch[1]) if char == 1] idx = random.choice(ones_index) arch[1].pop(idx) return arch def _swap(self, arch, R): """Random swap one in arch code. :param arch: input arch code :type arch: list :return: changed arch code :rtype: list """ while True: not_ones_index = [i for i, char in enumerate(arch) if char != 1] idx = random.choice(not_ones_index) r = random.randint(1, R) direction = -r if random.random() > 0.5 else r try: arch[idx], arch[idx + direction] = arch[idx + direction], arch[idx] break except Exception: continue return arch @property def max_samples(self): """Get max samples number.""" return self.max_sample
class DnetNas(SearchAlgorithm): """DnetNas. :param search_space: input search_space :type: SeachSpace """ config = DnetNasConfig() def __init__(self, search_space=None, **kwargs): """Init DnetNas.""" super(DnetNas, self).__init__(search_space, **kwargs) # ea or random self.num_mutate = self.config.policy.num_mutate self.random_ratio = self.config.policy.random_ratio self.max_sample = self.config.range.max_sample self.min_sample = self.config.range.min_sample self.sample_count = 0 logging.info("inited DnetNas") self.pareto_front = ParetoFront(self.config.pareto.object_count, self.config.pareto.max_object_ids) self._best_desc_file = 'nas_model_desc.json' block_nas_folder = ModelConfig.models_folder.format( local_base_path=self.local_base_path) logging.info(f'folder: {block_nas_folder}') base_reports = ReportServer().load_records_from_model_folder( block_nas_folder) logging.info(f'base_reports: {base_reports}') self.base_block = base_reports[0].desc['backbone']['encoding'].split( '_')[0] @property def is_completed(self): """Check if NAS is finished.""" return self.sample_count > self.max_sample def search(self): """Search in search_space and return a sample.""" sample = {} while sample is None or 'code' not in sample: pareto_dict = self.pareto_front.get_pareto_front() pareto_list = list(pareto_dict.values()) if self.pareto_front.size < self.min_sample or random.random( ) < self.random_ratio or len(pareto_list) == 0: sample_desc = self.search_space.sample() sample_desc.update({'block_coding': self.base_block}) sample = self.codec.encode(sample_desc) else: sample = pareto_list[0] if sample is not None and 'code' in sample: code = sample['code'] code = self.ea_sample(code) sample['code'] = code if not self.pareto_front._add_to_board(id=self.sample_count + 1, config=sample): sample = None self.sample_count += 1 sample_desc = self.codec.decode(sample) logging.info(f"sample: {sample_desc['network.backbone.encoding']}") return dict(worker_id=self.sample_count, encoded_desc=sample_desc) def ea_sample(self, code): """Use EA op to change a arch code. :param code: list of code for arch :type code: list :return: changed code :rtype: list """ new_arch = code.copy() random_value = random.randint(0, 2) if random_value == 0: self._insert(new_arch) elif random_value == 1: self._remove(new_arch) else: self._swap(new_arch) return new_arch def update(self, record): """Use train and evaluate result to update algorithm. :param performance: performance value from trainer or evaluator """ perf = record.get("rewards") worker_id = record.get("worker_id") logging.info("update performance={}".format(perf)) self.pareto_front.add_pareto_score(worker_id, perf) def _insert(self, arch): """Random insert to arch code. :param arch: input arch code :type arch: list :return: changed arch code :rtype: list """ macro_coding = arch['network.backbone.macro_coding'] macro_coding_list = list(macro_coding) idx = np.random.randint(low=0, high=len(macro_coding)) macro_coding_list.insert(idx, '1') macro_coding_new = ''.join(macro_coding_list) arch['network.backbone.macro_coding'] = macro_coding_new print(f'insert: {macro_coding} --> {macro_coding_new}') return arch def _remove(self, arch): """Random remove one from arch code. :param arch: input arch code :type arch: list :return: changed arch code :rtype: list """ macro_coding = arch['network.backbone.macro_coding'] macro_coding_list = list(macro_coding) while True: idx = np.random.randint(low=0, high=len(macro_coding)) if macro_coding_list[idx] == '1': macro_coding_list.pop(idx) break macro_coding_new = ''.join(macro_coding_list) arch['network.backbone.macro_coding'] = macro_coding_new print(f'remove: {macro_coding} --> {macro_coding_new}') return arch def _swap(self, arch): """Random swap one in arch code. :param arch: input arch code :type arch: list :return: changed arch code :rtype: list """ macro_coding = arch['network.backbone.macro_coding'] macro_coding_list = list(macro_coding) variant_indexes = [] for index in range(len(macro_coding) - 1): if macro_coding[index] != macro_coding[index + 1]: variant_indexes.append(index) while True: idx = np.random.randint(low=0, high=len(variant_indexes)) index = variant_indexes[idx] origin_code = macro_coding_list[index] if index == len(macro_coding) - 2 and origin_code == '-': continue else: break macro_coding_list[index] = macro_coding_list[index + 1] macro_coding_list[index + 1] = origin_code macro_coding_new = ''.join(macro_coding_list) arch['network.backbone.macro_coding'] = macro_coding_new print(f'swap: {macro_coding} --> {macro_coding_new}') return arch @property def max_samples(self): """Get max samples number.""" return self.max_sample