def thresholds(save_pdf=False): conf = ss_timing_analysis.conf.get_conf() # load the fit parameters, excluding the bad subjects # this will be subj x onsets x oris x (a,b) x (est, 2.5, 97.5) (fit, _, _) = ss_timing_analysis.group_fit.load_fit_data(exclude=True) # restrict to just the alpha estimates data = fit[..., 0, 0] embed = veusz.embed.Embedded("veusz") figutils.set_veusz_style(embed) page = embed.Root.Add("page") page.width.val = "13.5cm" page.height.val = "6cm" # separate columns for simultaneous and leading grid = page.Add("grid") grid.rows.val = 1 grid.columns.val = 2 grid.leftMargin.val = grid.rightMargin.val = "0cm" grid.topMargin.val = grid.bottomMargin.val = "0cm" onset_order = [1, 0] # sim, leading ori_order = [0, 1] # orth, para for i_onset in onset_order: graph = grid.Add("graph", autoadd=False) graph.bottomMargin.val = "1cm" graph.topMargin.val = "0.6cm" x_axis = graph.Add("axis") y_axis = graph.Add("axis") for i_ori in ori_order: curr_data = data[:, i_onset, i_ori] boxplot = graph.Add("boxplot") dataset_str = "data_{onset:d}_{ori:d}".format(onset=i_onset, ori=i_ori) embed.SetData(dataset_str, curr_data) boxplot.values.val = dataset_str boxplot.posn.val = i_ori boxplot.labels.val = conf.surr_ori_labels[i_ori] boxplot.fillfraction.val = 0.3 boxplot.markerSize.val = "2pt" for i_subj in xrange(conf.n_subj): subj_data_str = "subj_data_{subj:d}_{onset:d}".format( subj=i_subj, onset=i_onset) embed.SetData(subj_data_str, data[i_subj, i_onset, :]) xy = graph.Add("xy") xy.xData.val = [0, 1] xy.yData.val = subj_data_str xy.MarkerFill.hide.val = True xy.MarkerLine.hide.val = True xy.PlotLine.transparency.val = 80 x_axis.mode.val = "labels" x_axis.MajorTicks.manualTicks.val = [0, 1] x_axis.MinorTicks.hide.val = True x_axis.label.val = "Relative orientation" y_axis.log.val = True y_axis.TickLabels.format.val = "%.3g" y_axis.MajorTicks.manualTicks.val = [0.001, 0.01, 0.1, 0.5, 1] y_axis.min.val = 0.005 y_axis.max.val = 1.0 y_axis.label.val = "Threshold contrast" cond_label = graph.Add("label") cond_label.label.val = conf.surr_onset_labels[i_onset] cond_label.yPos.val = 1.02 cond_label.xPos.val = 0.5 cond_label.alignHorz.val = "centre" cond_label.Text.size.val = "8pt" if save_pdf: _save(embed, conf, "ss_timing_thresholds") embed.EnableToolbar(True) embed.WaitForClose()
def eg_subject(subj_id="p1022", save_pdf=False): conf = ss_timing_analysis.conf.get_conf() # find the index for this subject # we'll load the data without excluding participants, so this needs to be # in the all subjects list i_subj = conf.all_subj_ids.index(subj_id) # subj x onsets x oris x bins x (prop, n) data = ss_timing_analysis.group_data.bin_group_data() # restrict to this subject data = data[i_subj, ...] # fit is: subj x onsets x oris x (a, b) x (est, 2.5, 97.5) # fit_fine is: subj x onsets x oris x X x 2 (2.5, 97.5) (fit, fit_fine, _) = ss_timing_analysis.group_fit.load_fit_data() # again, restrict to this subject fit = fit[i_subj, ...] fit_fine = fit_fine[i_subj, ...] embed = veusz.embed.Embedded("veusz") figutils.set_veusz_style(embed) embed.SetData("bin_centres", conf.bin_centres) embed.SetData("fine_x", conf.fine_x) page = embed.Root.Add("page") page.width.val = "8cm" page.height.val = "20cm" grid = page.Add("grid") grid.rows.val = 4 grid.columns.val = 1 grid.leftMargin.val = grid.rightMargin.val = "0cm" grid.topMargin.val = grid.bottomMargin.val = "0cm" onset_order = [1, 0] # sim, leading ori_order = [0, 1] # orth, par for i_onset in onset_order: for i_ori in ori_order: graph = grid.Add("graph", autoadd=False) graph.leftMargin.val = "1.2cm" graph.rightMargin.val = "0.5cm" graph.topMargin.val = "0.7cm" graph.bottomMargin.val = "0.85cm" x_axis = graph.Add("axis") y_axis = graph.Add("axis") cond_label = graph.Add("label") cond_label.label.val = ", ".join( [conf.surr_ori_labels[i_ori], conf.surr_onset_labels[i_onset]]) cond_label.yPos.val = 1.02 cond_label.xPos.val = 0.5 cond_label.alignHorz.val = "centre" cond_label.Text.size.val = "8pt" # CROSSHAIRS pse_y = graph.Add("xy") pse_y.xData.val = [0.001, fit[i_onset, i_ori, 0, 0]] pse_y.yData.val = [ conf.psych_func(fit[i_onset, i_ori, 0, 0], fit[i_onset, i_ori, 0, 0], fit[i_onset, i_ori, 0, 1]) ] * 2 pse_x = graph.Add("xy") pse_x.xData.val = [fit[i_onset, i_ori, 0, 0]] * 2 pse_x.yData.val = [ -0.05, conf.psych_func(fit[i_onset, i_ori, 0, 0], fit[i_onset, i_ori, 0, 0], fit[i_onset, i_ori, 0, 1]) ] for pse_ax in (pse_y, pse_x): pse_ax.MarkerFill.hide.val = True pse_ax.MarkerLine.hide.val = True pse_ax.PlotLine.style.val = "dashed" # POINTS points = graph.Add("xy") prop_name = "resp_prop_{t:d}_{o:d}".format(t=i_onset, o=i_ori) embed.SetData(prop_name, data[i_onset, i_ori, :, 0]) k_name = "resp_k_{t:d}_{o:d}".format(t=i_onset, o=i_ori) point_scale = np.sqrt( (data[i_onset, i_ori, :, 1] * 1) / np.pi) * 2 * 0.35 embed.SetData(k_name, point_scale) points.xData.val = "bin_centres" points.yData.val = prop_name points.scalePoints.val = k_name points.MarkerLine.hide.val = True points.MarkerFill.transparency.val = 65 points.PlotLine.hide.val = True points.MarkerFill.color.val = "blue" # FIT fit_plot = graph.Add("xy") fit_name = "fit_{t:d}_{o:d}".format(t=i_onset, o=i_ori) fit_y = conf.psych_func(conf.fine_x, alpha=fit[i_onset, i_ori, 0, 0], beta=fit[i_onset, i_ori, 1, 0]) embed.SetData( fit_name, fit_y, poserr=np.abs(fit_fine[i_onset, i_ori, :, 1] - fit_y), negerr=np.abs(fit_fine[i_onset, i_ori, :, 0] - fit_y)) fit_plot.xData.val = "fine_x" fit_plot.yData.val = fit_name fit_plot.MarkerFill.hide.val = True fit_plot.MarkerLine.hide.val = True fit_plot.errorStyle.val = "fillvert" fit_plot.ErrorBarLine.hide.val = True x_axis.log.val = True x_axis.label.val = "Target contrast" x_axis.TickLabels.format.val = "%.3g" x_axis.MajorTicks.manualTicks.val = [0.001, 0.01, 0.1, 0.5, 1] y_axis.min.val = -0.1 y_axis.max.val = 1.1 y_axis.label.val = "Accuracy (prop. correct)" y_axis.MinorTicks.hide.val = True y_axis.MajorTicks.manualTicks.val = [0, 0.25, 0.5, 0.69, 1] y_axis.TickLabels.format.val = "%.02f" if save_pdf: _save(embed, conf, "ss_timing_eg_subject") embed.EnableToolbar(True) embed.WaitForClose()
def scatter(cond, form, save_pdf=False): if cond not in ["sim", "sim_orth", "lead"]: raise ValueError() if form not in ["linear", "rank"]: raise ValueError() conf = ss_timing_analysis.conf.get_conf() # load the fit parameters, excluding the bad subjects # this will be subj x onsets x oris x (a,b) x (est, 2.5, 97.5) (fit, _, _) = ss_timing_analysis.group_fit.load_fit_data(exclude=True) # restrict to just the alpha estimates data = fit[..., 0, 0] if cond == "sim": data = data[:, 1, 1] - data[:, 1, 0] elif cond == "sim_orth": data = data[:, 1, 0] elif cond == "lead": #data = (data[:, 1, 1] - data[:, 1, 0]) - (data[:, 0, 1] - data[:, 0, 0]) data = data[:, 0, 1] - data[:, 0, 0] if form == "rank": data = scipy.stats.rankdata(data) embed = veusz.embed.Embedded("veusz") figutils.set_veusz_style(embed) embed.SetData("data", data) page = embed.Root.Add("page") page.width.val = "13.5cm" page.height.val = "10cm" grid = page.Add("grid") grid.rows.val = 2 grid.columns.val = 2 grid.leftMargin.val = grid.rightMargin.val = "2cm" grid.topMargin.val = grid.bottomMargin.val = "0cm" ss_nice = [ "Unusual experiences", "Cognitive disorganisation", "Introvertive anhedonia", "Impulsive nonconformity" ] for (i_sub, subscale) in enumerate( ("un_ex", "cog_dis", "int_anh", "imp_non")): curr_ss = ss_timing_analysis.dem.get_olife_subscale(subscale, exclude=True) if form == "rank": curr_ss = scipy.stats.rankdata(curr_ss) assert len(curr_ss) == len(data) graph = grid.Add("graph", autoadd=False) graph.bottomMargin.val = "1cm" graph.topMargin.val = "0.6cm" graph.leftMargin.val = "1cm" graph.aspect.val = 1 label = graph.Add("label") label.label.val = ss_nice[i_sub] label.yPos.val = 1.025 label.xPos.val = 0.5 label.alignHorz.val = "centre" x_axis = graph.Add("axis") y_axis = graph.Add("axis") xy = graph.Add("xy") xy.xData.val = curr_ss xy.yData.val = data xy.PlotLine.hide.val = True xy.MarkerFill.transparency.val = 60 xy.MarkerLine.hide.val = True xy.markerSize.val = "3pt" if form == "rank": x_axis.label.val = "O-LIFE subscale (rank; 1 = lowest)" else: x_axis.label.val = "O-LIFE subscale score" if cond == "sim": if form == "rank": y_axis.label.val = "Context effect (rank; 1 = lowest)" else: y_axis.label.val = "Context effect (contrast units)" elif cond == "sim_orth": if form == "rank": y_axis.label.val = "Orthogonal threshold (rank; 1 = lowest)" else: y_axis.label.val = "Orthogonal threshold (contrast units)" elif cond == "lead": if form == "rank": y_axis.label.val = "Leading context effect (rank; 1 = lowest)" else: y_axis.label.val = "Leading context effect (contrast units)" if form == "linear": if cond == "sim": y_max = 0.5 elif cond == "sim_orth": y_max = 0.03 y_axis.TickLabels.format.val = "%.3g" elif cond == "lead": y_max = 0.085 y_axis.max.val = y_max y_axis.min.val = 0.0 x_axis.min.val = -2 else: x_axis.min.val = -10 x_axis.max.val = 105 y_axis.min.val = -10 y_axis.max.val = 105 x_axis.MajorTicks.manualTicks.val = [1] + range(20, 83, 20) + [93] x_axis.MinorTicks.hide.val = True y_axis.MajorTicks.manualTicks.val = [1] + range(20, 83, 20) + [93] y_axis.MinorTicks.hide.val = True if save_pdf: _save(embed, conf, "ss_timing_{c:s}_{f:s}_scatter".format(c=cond, f=form)) embed.EnableToolbar(True) embed.WaitForClose()
def context_by_booth(save_pdf=False): conf = ss_timing_analysis.conf.get_conf() dem = ss_timing_analysis.dem.demographics() booths = np.array( [dem[subj_id]["testing_booth"] for subj_id in conf.subj_ids]) potential_booths = np.unique(booths) n_booths = len(potential_booths) assert n_booths == 2 # load the fit parameters, excluding the bad subjects # this will be subj x onsets x oris x (a,b) x (est, 2.5, 97.5) (fit, _, _) = ss_timing_analysis.group_fit.load_fit_data(exclude=True) # restrict to just the alpha estimates data = fit[..., 0, 0] # and look at the context effect for simultaneous data = data[:, 1, 1] - data[:, 1, 0] embed = veusz.embed.Embedded("veusz") figutils.set_veusz_style(embed) page = embed.Root.Add("page") page.width.val = "12cm" page.height.val = "8cm" graph = page.Add("graph", autoadd=False) graph.bottomMargin.val = "1cm" graph.topMargin.val = "0.6cm" x_axis = graph.Add("axis") y_axis = graph.Add("axis") for i_booth in xrange(n_booths): curr_booth = data[booths == potential_booths[i_booth]] boxplot = graph.Add("boxplot") dataset_str = "data_{b:d}".format(b=i_booth) embed.SetData(dataset_str, curr_booth) boxplot.values.val = dataset_str boxplot.posn.val = i_booth boxplot.labels.val = "{b:d} (n={n:d})".format(b=i_booth + 1, n=len(curr_booth)) boxplot.fillfraction.val = 0.3 boxplot.markerSize.val = "2pt" x_axis.mode.val = "labels" x_axis.MajorTicks.manualTicks.val = [0, 1] x_axis.MinorTicks.hide.val = True x_axis.label.val = "Testing booth" y_axis.TickLabels.format.val = "%.3g" y_axis.min.val = 0.0 y_axis.max.val = 0.5 y_axis.label.val = "Context effect for simultaneous (par - orth)" if save_pdf: _save(embed, conf, "ss_timing_context_by_booth") embed.EnableToolbar(True) embed.WaitForClose()
def pairwise_corr(save_pdf=False): conf = ss_timing_analysis.conf.get_conf() embed = veusz.embed.Embedded("veusz") figutils.set_veusz_style(embed) page = embed.Root.Add("page") page.width.val = "18cm" page.height.val = "15cm" grid = page.Add("grid") grid.rows.val = 4 grid.columns.val = 4 grid.leftMargin.val = grid.rightMargin.val = "0cm" grid.topMargin.val = "0cm" grid.bottomMargin.val = "0.1cm" # y_max = [20, 22, 15, 17] ss_nice = [ "Unusual\\\\experiences", "Cognitive\\\\disorganisation", "Introvertive\\\\anhedonia", "Impulsive\\\\nonconformity" ] for (i_row, row_sub) in enumerate( ("un_ex", "cog_dis", "int_anh", "imp_non")): row_ss = ss_timing_analysis.dem.get_olife_subscale(row_sub, exclude=True) row_ss = scipy.stats.rankdata(row_ss) for (i_col, col_sub) in enumerate( ("un_ex", "cog_dis", "int_anh", "imp_non")): col_ss = ss_timing_analysis.dem.get_olife_subscale(col_sub, exclude=True) col_ss = scipy.stats.rankdata(col_ss) graph = grid.Add("graph", autoadd=False) graph.leftMargin.val = graph.rightMargin.val = "0.3cm" graph.bottomMargin.val = graph.topMargin.val = "0.3cm" graph.aspect.val = 1 x_axis = graph.Add("axis") y_axis = graph.Add("axis") if i_col < i_row: print scipy.stats.pearsonr(row_ss, col_ss) xy = graph.Add("xy") xy.xData.val = row_ss xy.yData.val = col_ss xy.PlotLine.hide.val = True xy.MarkerFill.transparency.val = 60 xy.MarkerLine.hide.val = True xy.markerSize.val = "2pt" # x_axis.label.val = ss_nice[i_row] # y_axis.label.val = ss_nice[i_col] x_axis.min.val = -10 x_axis.max.val = 105 y_axis.min.val = -10 y_axis.max.val = 105 x_axis.MajorTicks.manualTicks.val = [1] + range(20, 83, 20) + [93] x_axis.MinorTicks.hide.val = True y_axis.MajorTicks.manualTicks.val = [1] + range(20, 83, 20) + [93] y_axis.MinorTicks.hide.val = True else: for ax in (x_axis, y_axis): ax.autoMirror.val = True ax.MajorTicks.hide.val = True ax.MinorTicks.hide.val = True ax.TickLabels.hide.val = True label = graph.Add("label") label.alignHorz.val = "centre" label.alignVert.val = "centre" if i_row == i_col: label.label.val = ss_nice[i_row] else: (r, p) = scipy.stats.pearsonr(row_ss, col_ss) r = np.round(r, 2) r_str = "{r:.02f}".format(r=r) p = np.round(p, 3) if p < 0.001: p_str = "< 0.001" else: p_str = "= {p:.03f}".format(p=p) label.label.val = "\\textit{{r}} = {r:s}\\\\ \\textit{{p}} {p:s}".format( r=r_str, p=p_str) if save_pdf: _save(embed, conf, "ss_timing_pairwise") embed.EnableToolbar(True) embed.WaitForClose()
def norms_comparison(save_pdf=False): norms = { "un_ex": { "F": { 0.25: 4, 0.5: 9, 0.75: 15, 0.9: 19.2 }, "M": { 0.25: 4, 0.5: 9, 0.75: 15, 0.9: 19 } }, "cog_dis": { "F": { 0.25: 8, 0.5: 13, 0.75: 17, 0.9: 21 }, "M": { 0.25: 8, 0.5: 12, 0.75: 16, 0.9: 20 } }, "int_anh": { "F": { 0.25: 2, 0.5: 4, 0.75: 7, 0.9: 10 }, "M": { 0.25: 2, 0.5: 5, 0.75: 8, 0.9: 11 } }, "imp_non": { "F": { 0.25: 6, 0.5: 9, 0.75: 12, 0.9: 14 }, "M": { 0.25: 6, 0.5: 10, 0.75: 13, 0.9: 15 } } } conf = ss_timing_analysis.conf.get_conf() dem = ss_timing_analysis.dem.demographics() genders = np.array([dem[subj_id]["gender"] for subj_id in conf.subj_ids]) embed = veusz.embed.Embedded("veusz") figutils.set_veusz_style(embed) page = embed.Root.Add("page") page.width.val = "18cm" page.height.val = "15cm" grid = page.Add("grid") grid.rows.val = 2 grid.columns.val = 2 grid.leftMargin.val = grid.rightMargin.val = "0cm" grid.topMargin.val = "0cm" grid.bottomMargin.val = "0.1cm" y_max = [20, 22, 15, 17] ss_nice = [ "Unusual experiences", "Cognitive disorganisation", "Introvertive anhedonia", "Impulsive nonconformity" ] for (i_sub, subscale) in enumerate( ("un_ex", "cog_dis", "int_anh", "imp_non")): curr_ss = ss_timing_analysis.dem.get_olife_subscale(subscale, exclude=True) graph = grid.Add("graph", autoadd=False) graph.bottomMargin.val = "1cm" graph.topMargin.val = "0.6cm" label = graph.Add("label") label.label.val = ss_nice[i_sub] label.yPos.val = 1.01 label.xPos.val = 0.5 label.alignHorz.val = "centre" x_axis = graph.Add("axis") y_axis = graph.Add("axis") for (i_gender, gender) in enumerate(["F", "M"]): # first, the norms boxplot = graph.Add("boxplot") boxplot.calculate.val = False boxplot.median.val = norms[subscale][gender][0.5] boxplot.boxmin.val = norms[subscale][gender][0.25] boxplot.boxmax.val = norms[subscale][gender][0.75] boxplot.whiskermax.val = norms[subscale][gender][0.9] boxplot.whiskermin.val = norms[subscale][gender][0.25] boxplot.mean.val = norms[subscale][gender][0.5] boxplot.posn.val = i_gender - 0.15 boxplot.fillfraction.val = 0.15 boxplot.markerSize.val = "2pt" boxplot.labels.val = "Norm\\\\({g:s})".format(g=gender) boxplot.meanmarker.val = "none" curr_gender = curr_ss[genders == gender] (b25, b50, b75, b90) = scipy.stats.scoreatpercentile(curr_gender, [25, 50, 75, 90]) boxplot = graph.Add("boxplot") boxplot.calculate.val = False boxplot.median.val = b50 boxplot.boxmin.val = b25 boxplot.boxmax.val = b75 boxplot.whiskermax.val = b90 boxplot.whiskermin.val = b25 boxplot.mean.val = b50 boxplot.posn.val = i_gender + 0.15 boxplot.fillfraction.val = 0.15 boxplot.markerSize.val = "2pt" boxplot.labels.val = "Curr\\\\({g:s})".format(g=gender) boxplot.meanmarker.val = "none" y_axis.min.val = 0.0 y_axis.max.val = y_max[i_sub] y_axis.MajorTicks.manualTicks.val = range(0, y_max[i_sub] + 1, 5) x_axis.mode.val = "labels" x_axis.MajorTicks.manualTicks.val = [-0.15, 0.15, 0.85, 1.15] x_axis.MinorTicks.hide.val = True x_axis.label.val = "Source and gender" if save_pdf: _save(embed, conf, "ss_timing_norms_comparison") embed.EnableToolbar(True) embed.WaitForClose()
def scatter_sub(save_pdf=False): conf = ss_timing_analysis.conf.get_conf() # load the fit parameters, excluding the bad subjects # this will be subj x onsets x oris x (a,b) x (est, 2.5, 97.5) (fit, _, _) = ss_timing_analysis.group_fit.load_fit_data(exclude=True) # restrict to just the alpha estimates data = fit[..., 0, 0] data = data[:, 1, 1] - data[:, 1, 0] embed = veusz.embed.Embedded("veusz") figutils.set_veusz_style(embed) page = embed.Root.Add("page") page.width.val = "18cm" page.height.val = "15cm" grid = page.Add("grid") grid.rows.val = 2 grid.columns.val = 2 grid.leftMargin.val = grid.rightMargin.val = "0cm" grid.topMargin.val = "0cm" grid.bottomMargin.val = "0.1cm" ss_nice = [ "Unusual experiences", "Cognitive disorganisation", "Introvertive anhedonia", "Impulsive nonconformity" ] for (i_sub, subscale) in enumerate( ("un_ex", "cog_dis", "int_anh", "imp_non")): curr_ss = ss_timing_analysis.dem.get_olife_subscale(subscale, exclude=True) assert len(curr_ss) == len(data) graph = grid.Add("graph", autoadd=False) graph.bottomMargin.val = "1cm" graph.topMargin.val = "0.6cm" label = graph.Add("label") label.label.val = ss_nice[i_sub] label.yPos.val = 1.01 label.xPos.val = 0.5 label.alignHorz.val = "centre" x_axis = graph.Add("axis") y_axis = graph.Add("axis") xy = graph.Add("xy") xy.xData.val = curr_ss xy.yData.val = data xy.PlotLine.hide.val = True xy.MarkerFill.transparency.val = 60 xy.MarkerLine.hide.val = True x_axis.label.val = "Score" y_axis.label.val = "Context effect for simultaneous (par - orth)" y_max = 0.5 y_axis.max.val = y_max y_axis.min.val = 0.0 x_axis.min.val = -2 if save_pdf: _save(embed, conf, "ss_timing_scatter_sub") embed.EnableToolbar(True) embed.WaitForClose()
def old_scatter(save_pdf=False, cond="sim"): conf = ss_timing_analysis.conf.get_conf() # load the fit parameters, excluding the bad subjects # this will be subj x onsets x oris x (a,b) x (est, 2.5, 97.5) (fit, _, _) = ss_timing_analysis.group_fit.load_fit_data(exclude=True) # restrict to just the alpha estimates data = fit[..., 0, 0] if cond == "sim": data = data[:, 1, 1] - data[:, 1, 0] elif cond == "sim_orth": data = data[:, 1, 0] elif cond == "lead": data = data[:, 0, 1] - data[:, 0, 0] dem = ss_timing_analysis.dem.demographics() # righto, now for the sz scores sz = np.array([dem[subj_id]["olife_total"] for subj_id in conf.subj_ids]) # check that we've exlcuded subjects, as we think we should have assert len(sz) == len(data) embed = veusz.embed.Embedded("veusz") figutils.set_veusz_style(embed) page = embed.Root.Add("page") page.width.val = "18cm" page.height.val = "8cm" grid = page.Add("grid") grid.rows.val = 1 grid.columns.val = 2 grid.leftMargin.val = grid.rightMargin.val = "0cm" grid.bottomMargin.val = grid.topMargin.val = "0cm" grid.scaleCols.val = [0.85, 0.17] # SCATTER graph = grid.Add("graph", autoadd=False) graph.bottomMargin.val = "1cm" x_axis = graph.Add("axis") y_axis = graph.Add("axis") xy = graph.Add("xy") xy.xData.val = sz xy.yData.val = data xy.PlotLine.hide.val = True xy.MarkerFill.transparency.val = 60 xy.MarkerLine.hide.val = True x_axis.label.val = "Schizotypy score" if cond == "sim": y_axis.label.val = "Context effect for simultaneous (par - orth)" y_max = 0.5 elif cond == "sim_orth": y_axis.label.val = "Contrast detection threshold for simultaneous, orth" y_max = 0.03 y_axis.TickLabels.format.val = "%.3g" elif cond == "lead": y_axis.label.val = "Context effect for leading surround (par - orth)" y_max = 0.085 y_axis.max.val = y_max y_axis.min.val = 0.0 # KDE graph = grid.Add("graph", autoadd=False) graph.leftMargin.val = "0cm" graph.bottomMargin.val = "1cm" x_axis = graph.Add("axis") y_axis = graph.Add("axis") kde = scipy.stats.gaussian_kde(data) kde_x = np.linspace(0, y_max, 100) kde_y = kde(kde_x) xy = graph.Add("xy") xy.xData.val = kde_y xy.yData.val = kde_x xy.MarkerFill.hide.val = True xy.MarkerLine.hide.val = True xy.FillBelow.fillto.val = "left" xy.FillBelow.color.val = "grey" xy.PlotLine.color.val = "grey" xy.FillBelow.hide.val = False y_axis.max.val = y_max x_axis.hide.val = True x_axis.lowerPosition.val = 0.075 if save_pdf: _save(embed, conf, "ss_timing_{c:s}_scatter".format(c=cond)) embed.EnableToolbar(True) embed.WaitForClose()
def split(save_pdf=False): conf = ss_timing_analysis.conf.get_conf() split_locs = [50, 40, 30, 20, 10] n_splits = len(split_locs) data = ss_timing_analysis.split.split_ana() embed = veusz.embed.Embedded("veusz") figutils.set_veusz_style(embed) page = embed.Root.Add("page") page.width.val = "10cm" page.height.val = "10cm" graph = page.Add("graph", autoadd=False) graph.bottomMargin.val = "2.5cm" graph.topMargin.val = "0.2cm" graph.leftMargin.val = "1.5cm" graph.rightMargin.val = "0cm" x_axis = graph.Add("axis") y_axis = graph.Add("axis") subscale_colours = ["#e41a1c", "#377eb8", "#4daf4a", "#984ea3"] split_lbl = [ "< {s1:d}%, >= {s2:d}%".format(s1=sloc, s2=100 - sloc) for sloc in split_locs ] embed.SetDataText("split_lbl", split_lbl) for (i_sub, sub) in enumerate(conf.subscales): embed.SetData(sub, data[:, i_sub, 0], symerr=data[:, i_sub, 1]) xy = graph.Add("xy") x = np.arange(n_splits) + np.linspace(-0.15, 0.15, 4)[i_sub] xy.xData.val = x xy.yData.val = sub if i_sub == 0: xy.labels.val = "split_lbl" xy.MarkerLine.hide.val = False #xy.MarkerLine.transparency.val = 20 xy.MarkerFill.hide.val = True #xy.PlotLine.hide.val = True xy.markerSize.val = "2pt" xy.MarkerLine.color.val = subscale_colours[i_sub] xy.PlotLine.color.val = subscale_colours[i_sub] xy.ErrorBarLine.color.val = subscale_colours[i_sub] #xy.marker.val = ana_markers[i_ana] xy.key.val = "".join(sub.title().split("_")) xy.Label.hide.val = True key = graph.Add("key") key.horzPosn.val = "manual" key.vertPosn.val = "manual" key.horzManual.val = 0.051125165504591 key.vertManual.val = 0.79086156527087 x_axis.mode.val = "labels" x_axis.min.val = -0.5 x_axis.max.val = 4.5 x_axis.MinorTicks.hide.val = True x_axis.MajorTicks.manualTicks.val = range(n_splits) x_axis.TickLabels.rotate.val = "45" x_axis.label.val = "Group split" y_axis.label.val = "Context effect difference (high - low)" if save_pdf: _save(embed, conf, "ss_timing_split") embed.EnableToolbar(True) embed.WaitForClose()
def bf(save_pdf=False): conf = ss_timing_analysis.conf.get_conf() conf.n_boot = 1 # N x (r, bf) r_bf = np.loadtxt(os.path.join(conf.base_path, "ss_timing_bf.txt")) # analysis (3) x subscale (4) corr = ss_timing_analysis.stats.correlations(conf)[..., 0] embed = veusz.embed.Embedded("veusz") figutils.set_veusz_style(embed) page = embed.Root.Add("page") page.width.val = "8cm" page.height.val = "8.5cm" graph = page.Add("graph", autoadd=False) graph.bottomMargin.val = "2.5cm" graph.topMargin.val = "0.2cm" graph.leftMargin.val = "0.9cm" graph.rightMargin.val = "1.4cm" x_axis = graph.Add("axis") y_axis = graph.Add("axis") subscale_colours = ["#e41a1c", "#377eb8", "#4daf4a", "#984ea3"] ana_markers = ["circle", "square", "triangle"] ana_sizes = [4, 3.54, 5.01] for i_sub in xrange(4): for i_ana in xrange(3): xy = graph.Add("xy") xy.xData.val = corr[i_ana, i_sub] # need to find the nearest bayes factor i_bf = np.argmin(np.abs(corr[i_ana, i_sub] - r_bf[:, 0])) bf = r_bf[i_bf, 1] print i_sub, i_ana, np.log(bf) xy.yData.val = np.log(bf) xy.MarkerLine.hide.val = False #xy.MarkerLine.transparency.val = 20 xy.MarkerFill.hide.val = True xy.PlotLine.hide.val = True xy.markerSize.val = "{s:.3f}pt".format(s=ana_sizes[i_ana] * 0.7) xy.MarkerLine.color.val = subscale_colours[i_sub] xy.marker.val = ana_markers[i_ana] xy.key.val = " " bf_xy = graph.Add("xy") bf_xy.xData.val = r_bf[:, 0] bf_xy.yData.val = np.log(r_bf[:, 1]) bf_xy.MarkerFill.hide.val = True bf_xy.MarkerLine.hide.val = True log_div = np.log([30.0, 10.0, 3.0, 1.0, 1 / 3.0, 1 / 10.0, 1 / 30.]) div_labels = [ "Strong H_1", "Substantial H_1", "Anecdotal H_1", "Anecdotal H_0", "Substantial H_0", "Strong H_0", "" ] div_delta = (log_div[0] - log_div[1]) / 2.0 for (curr_div, div_lbl) in zip(log_div, div_labels): xy = graph.Add("xy") xy.xData.val = [-0.4, 0.4] xy.yData.val = [curr_div] * 2 xy.MarkerFill.hide.val = True xy.MarkerLine.hide.val = True xy.PlotLine.style.val = "dash1" xy.color.val = "grey" if div_lbl != "": lbl = graph.Add("label") lbl.label.val = div_lbl lbl.xPos.val = 0.361 lbl.yPos.val = curr_div - div_delta lbl.alignVert.val = "centre" lbl.positioning.val = "axes" hoff = 0.1 key = graph.Add("key") key.Border.hide.val = True key.keyLength.val = "0.415cm" key.columns.val = 4 key.horzPosn.val = "manual" key.vertPosn.val = "manual" key.horzManual.val = 0.188 + hoff key.vertManual.val = -0.397 col_start = 0.224 + hoff col_delta = 0.409 - 0.224 for (i_col, ss) in enumerate(conf.subscales): lbl = graph.Add("label") lbl.label.val = "".join(ss.title().split("_")) lbl.xPos.val = col_start + i_col * col_delta lbl.yPos.val = -0.233 lbl.alignHorz.val = "centre" lbl.Text.size.val = "7pt" ana_labels = ["Context (sim.)", "Orthogonal (sim.)", "Context (delay)"] row_start = -0.293 row_delta = -0.293 - -0.341 for (i_row, ana_label) in enumerate(ana_labels): lbl = graph.Add("label") lbl.label.val = ana_label lbl.xPos.val = 0.151 + hoff lbl.yPos.val = row_start - i_row * row_delta lbl.alignHorz.val = "right" lbl.Text.size.val = "7pt" x_axis.label.val = "Correlation (r)" x_axis.TickLabels.format.val = "%.1f" x_axis.Label.offset.val = "2pt" y_axis.min.val = -4 y_axis.max.val = 4 y_axis.label.val = "log(Bayes Factor)" y_axis.TickLabels.format.val = "%.1f" y_axis.Label.offset.val = "2pt" y_axis.MinorTicks.hide.val = True if save_pdf: _save(embed, conf, "ss_timing_bf") embed.EnableToolbar(True) embed.WaitForClose()
def subjects(save_pdf=False): conf = ss_timing_analysis.conf.get_conf() # subj x onsets x oris x bins x (prop, n) data = ss_timing_analysis.group_data.bin_group_data() # fit is: subj x onsets x oris x (a, b) x (est, 2.5, 97.5) # fit_fine is: subj x onsets x oris x X x 2 (2.5, 97.5) (fit, fit_fine, _) = ss_timing_analysis.group_fit.load_fit_data() embed = veusz.embed.Embedded("veusz") figutils.set_veusz_style(embed) embed.SetData("bin_centres", conf.bin_centres) embed.SetData("fine_x", conf.fine_x) for (i_subj, subj_id) in enumerate(conf.all_subj_ids): page = embed.Root.Add("page") page.width.val = "21cm" page.height.val = "29.7cm" label = page.Add("label") label.label.val = subj_id label.yPos.val = 0.77 if subj_id in conf.exclude_ids: label.label.val += " (excluded)" label.Text.color.val = "red" grid = page.Add("grid") grid.rows.val = 2 grid.columns.val = 2 grid.leftMargin.val = grid.rightMargin.val = "3cm" grid.topMargin.val = "8cm" grid.bottomMargin.val = "8cm" for i_onset in xrange(conf.n_surr_onsets): for i_ori in xrange(conf.n_surr_oris): graph = grid.Add("graph", autoadd=False) x_axis = graph.Add("axis") y_axis = graph.Add("axis") cond_label = graph.Add("label") cond_label.label.val = ", ".join([ conf.surr_ori_labels[i_ori], conf.surr_onset_labels[i_onset] ]) cond_label.yPos.val = 1.02 cond_label.xPos.val = 0.5 cond_label.alignHorz.val = "centre" cond_label.Text.size.val = "8pt" # CROSSHAIRS pse_y = graph.Add("xy") pse_y.xData.val = [0.001, fit[i_subj, i_onset, i_ori, 0, 0]] pse_y.yData.val = [ conf.psych_func(fit[i_subj, i_onset, i_ori, 0, 0], fit[i_subj, i_onset, i_ori, 0, 0], fit[i_subj, i_onset, i_ori, 0, 1]) ] * 2 pse_x = graph.Add("xy") pse_x.xData.val = [fit[i_subj, i_onset, i_ori, 0, 0]] * 2 pse_x.yData.val = [ -0.05, conf.psych_func(fit[i_subj, i_onset, i_ori, 0, 0], fit[i_subj, i_onset, i_ori, 0, 0], fit[i_subj, i_onset, i_ori, 0, 1]) ] for pse_ax in (pse_y, pse_x): pse_ax.MarkerFill.hide.val = True pse_ax.MarkerLine.hide.val = True pse_ax.PlotLine.style.val = "dashed" # POINTS points = graph.Add("xy") prop_name = "resp_prop_{s:d}_{t:d}_{o:d}".format(s=i_subj, t=i_onset, o=i_ori) embed.SetData(prop_name, data[i_subj, i_onset, i_ori, :, 0]) k_name = "resp_k_{s:d}_{t:d}_{o:d}".format(s=i_subj, t=i_onset, o=i_ori) point_scale = np.sqrt( data[i_subj, i_onset, i_ori, :, 1] / np.pi) * 2 * 0.35 embed.SetData(k_name, point_scale) points.xData.val = "bin_centres" points.yData.val = prop_name points.scalePoints.val = k_name points.MarkerLine.hide.val = True points.MarkerFill.transparency.val = 50 points.PlotLine.hide.val = True points.MarkerFill.color.val = "blue" # FIT fit_plot = graph.Add("xy") fit_name = "fit_{s:d}_{t:d}_{o:d}".format(s=i_subj, t=i_onset, o=i_ori) fit_y = conf.psych_func(conf.fine_x, alpha=fit[i_subj, i_onset, i_ori, 0, 0], beta=fit[i_subj, i_onset, i_ori, 1, 0]) embed.SetData( fit_name, fit_y, poserr=np.abs(fit_fine[i_subj, i_onset, i_ori, :, 1] - fit_y), negerr=np.abs(fit_fine[i_subj, i_onset, i_ori, :, 0] - fit_y)) fit_plot.xData.val = "fine_x" fit_plot.yData.val = fit_name fit_plot.MarkerFill.hide.val = True fit_plot.MarkerLine.hide.val = True fit_plot.errorStyle.val = "fillvert" fit_plot.ErrorBarLine.hide.val = True x_axis.log.val = True x_axis.label.val = "Contrast" x_axis.TickLabels.format.val = "%.3g" x_axis.MajorTicks.manualTicks.val = [0.001, 0.01, 0.1, 0.5, 1] y_axis.min.val = -0.1 y_axis.max.val = 1.1 y_axis.label.val = "Accuracy (prop. correct)" y_axis.MinorTicks.hide.val = True y_axis.MajorTicks.manualTicks.val = [0, 0.25, 0.5, 0.69, 1] y_axis.TickLabels.format.val = "%.02f" if save_pdf: _save(embed, conf, "ss_timing_subjects", page=range(conf.n_all_subj)) embed.EnableToolbar(True) embed.WaitForClose()