def search_vfs_single(data):
    name, fps, target_color, threshold, start_time, confidence, y1, x1, y2, x2 = data
    end_time = start_time + (1 / fps)
    #    prefix = uuid.uuid4().hex

    with engine.VFS(transient=True, child_process=True):
        reconstruction.POOL_SIZE = 1
        #prefix = uuid.uuid4().hex
        #api.read(name, f'out-{prefix}.rgb', t=(start_time, end_time), roi=(y1, x1, y2, x2), codec='rgb')
        #        pass

        with api.read(name,
                      t=(start_time, end_time),
                      roi=(y1, x1, y2, x2),
                      codec='rgb') as stream:
            #fn = api.read(name, t=(start_time, end_time), roi=(y1, x1, y2, x2), codec='rgb')
            #with open(fn, 'rb') as stream:
            buffer = np.frombuffer(stream.read(), dtype=np.uint8)
            frame = buffer.reshape(y2 - y1, x2 - x1, 3)
            #except:
            #    pass

        if is_dominant_color(frame, target_color, threshold):
            return start_time, confidence, y1, x1, y2, x2
        else:
            return None  #-1, -1, -1, -1, -1, -1
def index_vfs(name, duration, fps, interval, results_filename):
    model, names = load_model()
    target_class = names.index('car')
    #hits = []
    read_parameters = []
    count = 0
    model_resolution = 540, 540

    with engine.VFS(transient=True), open(results_filename, "w") as f:
        reconstruction.POOL_SIZE = 1

        for index in range(duration * interval):
            start_time = index * (1 / interval)
            end_time = start_time + (1 / fps)
            read_parameters.append((name, None, model_resolution, None,
                                    (start_time, end_time), 'rgb', None))

            #if start_time > 30:
            #    break

        #fs = api.readmany2(*zip(*read_parameters), workers=16)
        #afs = as_completed(fs)
        for future in as_completed(
                api.readmany2i(*zip(*read_parameters), workers=16)):
            with open(future.result(), "rb") as stream:
                frame = np.frombuffer(stream.read(), dtype=np.uint8).reshape(
                    model_resolution[0], model_resolution[1], 3)

            start_time = read_parameters[future.index][4][0]

            for confidence, y1, x1, y2, x2 in inference(
                    model, frame, target_class):
                f.write(f'{start_time},{confidence},{y1},{x1},{y2},{x2}\n')
                count += 1

        logging.critical('Index.VFS: %d events indexed', count)
        #return hits
        """
        filenames = api.readmany(*zip(*read_parameters), workers=2)
        #read_parameters = read_parameters[:1]
        #filenames = api.preadmany(read_parameters, workers=4)
        #for filename in filenames:
        for filename in filenames:
            ##with api.read(name, resolution=(540, 704), t=(start_time, end_time), codec='rgb') as filename:
            #filename = api.read(name, resolution=(540,704), t=(start_time, end_time), codec='rgb')
            with open(filename, "rb") as stream:
                #frame = np.fromfile('out.rgb', dtype=np.uint8).reshape((540,704,3))
                frame = np.frombuffer(stream.read(), dtype=np.uint8).reshape(model_resolution[0], model_resolution[1], 3)

            for confidence, y1, x1, y2, x2 in inference(model, frame, target_class):
                f.write(f'{start_time},{confidence},{y1},{x1},{y2},{x2}\n')
                count += 1

        logging.critical('Index.VFS: %d events indexed', count)
        #return hits
        """
    """
예제 #3
0
def evaluate_quality(left_name, right_name, reference_directory,
                     reference_left_filename, reference_right_filename):
    with engine.VFS():
        logical_left = logicalvideo.LogicalVideo.get_by_name(left_name)
        physical_left = list(logical_left.videos())[0]
        gops_left = physical_left.gops()

        separate_psnr, overlap_psnr = 0, 0
        separate_count, overlap_count = 0, 0

        for gop in gops_left:
            if '{}' not in gop.filename:
                left_separate_psnr, left_count = evaluate_quality_separate(
                    gop, gop.filename, reference_directory)
                separate_psnr += left_separate_psnr
                separate_count += left_count
                pass
            else:
                left_separate_psnr, left_overlap_psnr, left_count = evaluate_quality_overlap_left(
                    gop, reference_directory)
                separate_psnr += left_separate_psnr
                overlap_psnr += left_overlap_psnr
                overlap_count += left_count
                separate_count += left_count
                pass

        logical_right = logicalvideo.LogicalVideo.get_by_name(right_name)
        physical_right = list(logical_right.videos())[0]
        gops_right = physical_right.gops()

        for gop in gops_right:
            if '{}' not in gop.filename:
                right_separate_psnr, right_count = evaluate_quality_separate(
                    gop, gop.filename, reference_directory)
                separate_psnr += right_separate_psnr
                separate_count += right_count
                pass
            else:
                right_separate_psnr, right_overlap_psnr, right_count = evaluate_quality_overlap_right(
                    gop, reference_directory)
                separate_psnr += right_separate_psnr
                overlap_psnr += right_overlap_psnr
                overlap_count += right_count
                separate_count += right_count

        print(
            f'Overall separate: {separate_psnr // separate_count}, overlap: {overlap_psnr // overlap_count}'
        )

        #ssim_left = evaluate_ssim(left_name, reference_left_filename, source_filename='out_left.mp4')
        ssim_right = evaluate_ssim(right_name,
                                   reference_right_filename,
                                   source_filename='out_right.mp4')

        return separate_psnr / separate_count, overlap_psnr / overlap_count, ssim_left, ssim_right
예제 #4
0
def create_cache(n, name, T, R, P):
    with engine.VFS(transient=True):
        for i in range(n):
            r = random.choice(R)
            p = random.choice(P)
            t1 = random.randint(0, T-1)
            t2 = min(random.randint(t1 + 1, t1 + 60), T - 1)

            with open('cache.txt', 'w') as f:
                f.writelines([f'{i} cache {name} {(t1, t2)} {r} {p}\n'])

            print(f'{i} cache {name} {(t1, t2)} {r} {p}')
            api.read(name, f"out.{p}", resolution=r, t=(t1, t2), codec=p)
def stream_vfs(name, resolution, fps, index_filename):
    prefix = uuid.uuid4().hex

    read_parameters = []
    with engine.VFS(transient=True):
        hits = parse_index_file(index_filename)
        for index, (start, end) in enumerate(group_by_frames(hits, fps)):
            read_parameters.append(
                (name, f'vfsout-{prefix}-{index}.mp4', resolution, None,
                 (start, end), 'h264', None))
            #api.read(name, f'out-{prefix}-{index}.mp4', t=(start, end), resolution=resolution, codec='h264')
        wait(
            list(
                api.readmany2(*zip(*read_parameters),
                              workers=min(len(read_parameters), 10))))
def temp():
    name = 'v'
    threshold = 50
    fps = 30

    with log_runtime('Search.VFS', level=logging.CRITICAL):
        with engine.VFS(transient=True):
            for start_time, confidence, y1, x1, y2, x2 in parse_index_file(
                    'index_cars_vfs.csv'):
                end_time = start_time + (1 / fps)
                api.read(name,
                         "foo.mp4",
                         t=(start_time, end_time),
                         roi=(y1, x1, y2, x2),
                         codec='rgb')
                pass
    exit(1)
    if not os.path.exists(gop.filename):
        return get_random_gop(engine, name, r, t, index, avoid_ids)
    elif gop.id in (avoid_ids or []):
        return get_random_gop(engine, name, r, t, index, avoid_ids)
    else:
        return gop


if __name__ == '__main__':
    logging.basicConfig(level=logging.INFO)

    n = 50
    mt = 0.0

    with engine.VFS(transient=True) as engine:
        api.vacuum()

        #api.write('v1', 'inputs/visualroad-4k-30a-gop30.mp4')
        #api.write('v2', 'inputs/visualroad-4k-30b-gop30.mp4')
        #api.read('v1', 'out.mp4', resolution=(1080, 1920), t=(0, 60))
        #api.read('v2', 'out.mp4', resolution=(1080, 1920), t=(0, 60))
        #api.read('v1', 'out.mp4', resolution=(540, 960), t=(0, 60))
        #api.read('v2', 'out.mp4', resolution=(540, 960), t=(0, 60))

        for i in range(n):
            r = 540, 960  # 1080, 1920 #2160, 3840 # # #
            gop1 = get_random_gop(engine, 'v1', r, 1, i)
            gop2 = get_random_gop(engine, 'v2', r, 1, i, [gop1.id])

            # Compression
예제 #8
0
    duration = time.time() - start_time
    print(f'{i} naive duration {duration:02f}')

def read_random(i, reader, source, r, t, p):
    reader(i, source, r, (t, t+1), p)

if __name__ == '__main__':
    logging.basicConfig(level=logging.INFO)

    n = int(sys.argv[1]) if len(sys.argv) > 1 else 1

    R = [(540, 960), (1080, 1920), (2160, 3840)]
    P = ['h264', 'hevc']
    T = (0, 3600)

    with engine.VFS(transient=True):
        api.vacuum()

    #create_cache(500, "v", 3600, R, P)
    #exit(0)

    n = 50
    ts = [random.randint(*T) for _ in range(n)]
    ps = [random.choice(P) for _ in range(n)]
    rs = [random.choice(R) for _ in range(n)]

    apply_deferred_compression = False
    apply_eviction = True

    #with engine.VFS(transient=True):
    #    if 'v' not in api.list():
def search_vfs(name, fps, target_color, threshold, index_filename,
               result_filename):
    count = 0
    read_parameters = []
    futures = []
    for start_time, confidence, y1, x1, y2, x2 in parse_index_file(
            index_filename):
        read_parameters.append(
            (name, None, None, (y1, x1, y2, x2),
             (start_time, start_time + (1 / fps)), 'rgb', None))

    #print(len(read_parameters))
    #read_parameters = read_parameters[:16]
    with ProcessPoolExecutor(max_workers=4) as pool, engine.VFS(
            transient=True, child_process=True):
        for future in api.readmany2i(*zip(*read_parameters), workers=32):
            futures.append(
                chain(pool, future, compute_dominant_color,
                      read_parameters[future.index], target_color, threshold))


#            futures.append(pool.submit(compute_dominant_color, future, read_parameters[future.index], target_color, threshold))
#for future in as_completed(api.readmany2i(*zip(*read_parameters), workers=16)):
#    futures.append(pool.submit(compute_dominant_color, read_parameters[future.index], future.result(), target_color, threshold))

        with open(result_filename, 'w') as f:
            for future in futures:  #as_completed(futures):
                if future.result() is not None:
                    start_time, confidence, y1, x1, y2, x2 = future.result()
                    f.write(f'{start_time},{confidence},{y1},{x1},{y2},{x2}\n')
                    count += 1
    """
            with open(future.result(), "rb") as stream:
                buffer = np.frombuffer(stream.read(), dtype=np.uint8)

                start_time = read_parameters[future.index][4][0]
                y1, x1, y2, x2 = read_parameters[future.index][3]
                confidence = 0
                frame = buffer.reshape(y2 - y1, x2 - x1, 3)

                if is_dominant_color(frame, target_color, threshold):
                    f.write(f'{start_time},{confidence},{y1},{x1},{y2},{x2}\n')
                    count += 1
    """

    logging.critical('Search.VFS: %d events indexed', count)
    return
    """
    read_parameters = []

    for start_time, confidence, y1, x1, y2, x2 in parse_index_file(index_filename):
        read_parameters.append((name, None, None, (y1, x1, y2, x2), (start_time, start_time + (1 / fps)), 'rgb', None))

    with engine.VFS(transient=True), open(result_filename, 'w') as f:
        for i, filename in enumerate(api.readmany(*zip(*read_parameters), workers=16)):
            with open(filename, 'rb') as stream:
                buffer = np.frombuffer(stream.read(), dtype=np.uint8)

                start_time = read_parameters[i][4][0]
                y1, x1, y2, x2 = read_parameters[i][3]
                confidence = 0
                frame = buffer.reshape(y2 - y1, x2 - x1, 3)

                if is_dominant_color(frame, target_color, threshold):
                    f.write(f'{start_time},{confidence},{y1},{x1},{y2},{x2}\n')
    """

    futures = []
    count = 0

    with ProcessPoolExecutor(max_workers=4) as pool, open(
            result_filename, 'w') as f:
        for data in ((name, fps, target_color, threshold, start_time,
                      confidence, y1, x1, y2, x2) for start_time, confidence,
                     y1, x1, y2, x2 in parse_index_file(index_filename)):
            future = pool.submit(search_vfs_single, data)
            futures.append(future)

        #wait(futures)
        for result in (f.result() for f in futures):
            if result is not None:
                start_time, confidence, y1, x1, y2, x2 = result
                f.write(f'{start_time},{confidence},{y1},{x1},{y2},{x2}\n')
                count += 1

        logging.critical('Search.VFS: %d events indexed', count)

        #for result in pool.map(search_vfs_single, data):
        #    if result is not None:
        #        start_time, confidence, y1, x1, y2, x2 = result
        #        f.write(f'{start_time},{confidence},{y1},{x1},{y2},{x2}\n')
    """
def ingest_vfs(filename, name=None):
    with engine.VFS(transient=True):
        api.write(name or "v%d" % int(time.time() * 1000), filename)
if __name__ == '__main__':
    logging.basicConfig(level=logging.CRITICAL)

    clients = 1
    ingest_filename = "inputs/visualroad-2k-30a.mp4"
    duration = 3600
    fps = 30
    query_iterval = 3
    target_color = np.array([127, 127, 127])
    color_threshold = 50
    resolution = (1080, 1920)

    #    temp()

    with engine.VFS(transient=True) as instance:
        #        api.vacuum()
        if 'v' not in api.list():
            api.write("v", ingest_filename)

    with ProcessPoolExecutor(max_workers=clients) as pool:
        #with log_runtime('Index.VFS', level=logging.CRITICAL):
        #    index_vfs("v", duration, fps, query_iterval, 'index_cars_vfs.csv')
        #with log_runtime('Search.VFS', level=logging.CRITICAL):
        #    search_vfs("v", fps, target_color, color_threshold, 'index_cars_vfs.csv', 'index_colors_vfs.csv')
        with log_runtime('Stream.VFS', level=logging.CRITICAL):
            stream_vfs('v', resolution, fps, 'index_colors_vfs.csv')

        #with log_runtime('Index.FS', level=logging.CRITICAL):
        #    index_fs(ingest_filename, duration, fps, query_iterval, 'index_cars_fs.csv')
        #with log_runtime('Search.FS', level=logging.CRITICAL):
예제 #12
0
import os
import logging
from vfs import api
from vfs import engine
from vfs.physicalvideo import PhysicalVideo
from vfs.rawcompression import compress
from vfs.videoio import encoded

if __name__ == '__main__':
    logging.basicConfig(level=logging.INFO)

    t = (0, 12)
    level = 15
    #with engine.VFS(transient=True):
    #    api.write('v', 'inputs/visualroad-4k-30a.mp4')
    #    api.read('v', '/dev/null', t=t, codec='rgb')
    #os.remove('out.rgb')

    if level is not None:
        with engine.VFS(transient=True):
            for physical in PhysicalVideo.get_all():
                if not encoded[physical.codec]:
                    for gop in physical.gops():
                        if gop.zstandard != level:
                            compress(gop.id, level)

    with engine.VFS(transient=True):
        api.read('v', '/dev/null', t=t, codec='rgb')