예제 #1
0
def evaluate():
    g = tf.Graph()
    with g.as_default():
        # load data get iterator
        data_loader = data_utils_mean.DataLoader(SEQUENCE_LENGTH, BATCH_SIZE,
                                                 NUM_EPOCHS)
        iterator = data_loader.load_data(TEST_TFR_PATH, False)
        frameNo, image, label = iterator.get_next()
        # define model graph
        # VGG FACE network
        VGGFace_network = vgg_face.VGGFace(SEQUENCE_LENGTH * BATCH_SIZE)
        image_batch = tf.reshape(image, [-1, 96, 96, 3])
        VGGFace_network.setup(
            image_batch
        )  # image_batch is a tensor of shape (batch_size*seq_length,image_dim,image_dim,3)
        face_output = VGGFace_network.get_face_fc0()
        # RNN part
        rnn_in = reshape_to_rnn(face_output)
        prediction = models.get_prediction_atten(rnn_in, attn_length=30)

        prediction = tf.reshape(prediction, [-1, 2])
        label_batch = tf.reshape(label, [-1, 2])
        with tf.Session(graph=g) as sess:
            restore_variables(sess)
            evaluated_predictions = []
            evaluated_labels = []
            while True:
                try:
                    pred, lab = sess.run([prediction, label_batch])
                    evaluated_predictions.append(pred)
                    evaluated_labels.append(lab)
                except tf.errors.OutOfRangeError:
                    break
            print 'Finish read data'
            predictions = np.reshape(evaluated_predictions, (-1, 2))
            labels = np.reshape(evaluated_labels, (-1, 2))
            for i, name in enumerate(['valence', 'arousal']):
                result = np.stack((predictions[:, i], labels[:, i]), axis=-1)
                np.savetxt(SUMMARY_PATH + name + '_test.txt',
                           result,
                           fmt="%.3f")
            conc_arousal = concordance_cc2(predictions[:, 1], labels[:, 1])
            conc_valence = concordance_cc2(predictions[:, 0], labels[:, 0])
            mse_arousal = sum(
                (predictions[:, 1] - labels[:, 1])**2) / len(labels[:, 1])
            mse_valence = sum(
                (predictions[:, 0] - labels[:, 0])**2) / len(labels[:, 0])
            print '#####################Summary#######################'
            print 'Concordance on valence : {}'.format(conc_valence)
            print 'Concordance on arousal : {}'.format(conc_arousal)
            print 'Concordance on total : {}'.format(
                (conc_arousal + conc_valence) / 2)
            print 'MSE Arousal : {}'.format(mse_arousal)
            print 'MSE Valence : {}'.format(mse_valence)
def train():
    g = tf.Graph()
    with g.as_default():
        # load data get iterator
        data_loader = data_utils_mean.DataLoader(SEQUENCE_LENGTH, BATCH_SIZE, NUM_EPOCHS)
        iterator = data_loader.load_data(TRAIN_TFR_PATH, True)
        with tf.Session(graph=g) as sess:
            frameNo, image, label = iterator.get_next()

            # VGG FACE network
            VGGFace_network = vgg_face.VGGFace(SEQUENCE_LENGTH * BATCH_SIZE)
            image_batch = reshape_to_cnn(image)
            VGGFace_network.setup(image_batch, trainable=False)
            face_output = VGGFace_network.get_face_fc0()

            # RNN part
            rnn_in = reshape_to_rnn(face_output)
            prediction = models.get_prediction_lstm(rnn_in)
            prediction = tf.reshape(prediction, [BATCH_SIZE, SEQUENCE_LENGTH, 2])

            label_batch = tf.reshape(label, [BATCH_SIZE, SEQUENCE_LENGTH, 2])

            # compute losses using slim
            compute_loss(prediction, label_batch)

            total_loss = slim.losses.get_total_loss()
            optimizer = tf.train.AdamOptimizer(LEARNING_RATE)

            # restore VGG-FACE model at the beginning
            restore_names = VGGFace_network.get_restore_vars()
            variables_to_restore = tf.contrib.framework.get_variables_to_restore(include=restore_names)
            init_fn = slim.assign_from_checkpoint_fn(VGG_RESTORE_PATH, variables_to_restore, ignore_missing_vars=False)


            # summarize_gradients : Whether or not add summaries for each gradient.
            # variables_to_train: an optional list of variables to train. If None, it will default to all tf.trainable_variables().
            train_op = slim.learning.create_train_op(total_loss,
                                                     optimizer,
                                                     summarize_gradients=True #  Whether or not add summaries for each gradient.
                                                     )
            loggingTF.set_verbosity(1)
            # keep 10000 ckpts
            saver = tf.train.Saver(max_to_keep=10000)
            # including initialize local and global variables

            slim.learning.train(train_op,
                            TRAIN_DIR,
                            init_fn=init_fn,
                            save_summaries_secs=60 * 15, # How often, in seconds, to save summaries.
                            log_every_n_steps=500, # The frequency, in terms of global steps, that the loss and global step are logged.
                            save_interval_secs=60 * 15, # How often, in seconds, to save the model to `logdir`.
                            saver=saver
                            )
예제 #3
0
def get_prediction(x):
    # VGG FACE network
    VGGFace_network = vgg_face.VGGFace(SEQUENCE_LENGTH * BATCH_SIZE)
    image_batch = reshape_to_cnn(x)
    VGGFace_network.setup(
        image_batch
    )  # image_batch is a tensor of shape (batch_size*seq_length,image_dim,image_dim,3)
    face_output = VGGFace_network.get_face_fc0()

    # RNN part
    rnn_in = reshape_to_rnn(face_output)
    prediction = models.get_prediction(rnn_in)
    prediction = tf.reshape(prediction, [BATCH_SIZE, SEQUENCE_LENGTH, 2])
    return prediction
def evaluate():
    g = tf.Graph()
    with g.as_default():
        # load data get iterator
        data_loader = data_utils_mean.DataLoader(SEQUENCE_LENGTH, BATCH_SIZE,
                                                 NUM_EPOCHS)
        iterator = data_loader.load_data(VALID_TFR_PATH, False)
        frameNo, image, label = iterator.get_next()
        # define model graph
        # VGG FACE network
        VGGFace_network = vgg_face.VGGFace(SEQUENCE_LENGTH * BATCH_SIZE)
        image_batch = tf.reshape(image, [-1, 96, 96, 3])
        VGGFace_network.setup(
            image_batch
        )  # image_batch is a tensor of shape (batch_size*seq_length,image_dim,image_dim,3)
        face_output = VGGFace_network.get_face_fc0()
        # RNN part
        rnn_in = reshape_to_rnn(face_output)
        prediction = models.get_prediction_indRNN(rnn_in)
        prediction = tf.reshape(prediction, [BATCH_SIZE, SEQUENCE_LENGTH, 2])
        label_batch = tf.reshape(label, [BATCH_SIZE, SEQUENCE_LENGTH, 2])

        # Computing MSE and Concordance values, and adding them to summary
        names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
            'eval/mse_valence':
            slim.metrics.streaming_mean_squared_error(prediction[:, :, 0],
                                                      label_batch[:, :, 0]),
            'eval/mse_arousal':
            slim.metrics.streaming_mean_squared_error(prediction[:, :, 1],
                                                      label_batch[:, :, 1]),
        })

        summary_ops = []
        conc_total = 0
        mse_total = 0
        for i, name in enumerate(['valence', 'arousal']):
            with tf.name_scope(name) as scope:
                concordance_cc2, values, updates = metrics.concordance_cc2(
                    tf.reshape(prediction[:, :, i], [-1]),
                    tf.reshape(label_batch[:, :, i], [-1]))
                for n, v in updates.items():
                    names_to_updates[n + '/' + name] = v
            op = tf.summary.scalar('eval/concordance_' + name, concordance_cc2)
            op = tf.Print(op, [concordance_cc2], 'eval/concordance_' + name)
            summary_ops.append(op)

            mse_eval = 'eval/mse_' + name
            op = tf.summary.scalar(mse_eval, names_to_values[mse_eval])
            op = tf.Print(op, [names_to_values[mse_eval]], mse_eval)
            summary_ops.append(op)

            mse_total += names_to_values[mse_eval]
            conc_total += concordance_cc2
        conc_total = conc_total / 2
        mse_total = mse_total / 2

        op = tf.summary.scalar('eval/concordance_total', conc_total)
        op = tf.Print(op, [conc_total], 'eval/concordance_total')
        summary_ops.append(op)

        op = tf.summary.scalar('eval/mse_total', mse_total)
        op = tf.Print(op, [mse_total], 'eval/mse_total')
        summary_ops.append(op)

        num_batches = int(NUM_BATCHES)
        loggingTF.set_verbosity(1)
        if not os.path.exists(SUMMARY_PATH):
            os.makedirs(SUMMARY_PATH)
        # always check latest ckpt and wait for next.

        slim.evaluation.evaluation_loop(
            '',
            CHECK_POINT_DIR,
            SUMMARY_PATH,
            num_evals=num_batches,
            eval_op=list(names_to_updates.values()),
            summary_op=tf.summary.merge(summary_ops),
            eval_interval_secs=EVAL_INTERVAL_SECS,
        )
def evaluate():
    g = tf.Graph()
    with g.as_default():
        # load data get iterator
        data_loader = data_utils.DataLoader(SEQUENCE_LENGTH, BATCH_SIZE,
                                            NUM_EPOCHS)
        iterator = data_loader.load_data(VALID_TFR_PATH, False)
        frameNo, image, label = iterator.get_next()
        # VGG FACE network
        VGGFace_network = vgg_face.VGGFace(SEQUENCE_LENGTH * BATCH_SIZE)
        image_batch = tf.reshape(image, [-1, 96, 96, 3])
        VGGFace_network.setup(
            image_batch
        )  # image_batch is a tensor of shape (batch_size*seq_length,image_dim,image_dim,3)
        face_output = VGGFace_network.get_face_fc0()
        # RNN part
        rnn_in = reshape_to_rnn(face_output)
        prediction = models.get_prediction(rnn_in)
        prediction = tf.reshape(prediction, [-1, 2])
        label_batch = tf.reshape(label, [-1, 2])
        with tf.Session(graph=g) as sess:
            # if not os.path.exists(SUMMARY_PATH):
            #     os.makedirs(SUMMARY_PATH)
            # eval_summary_writer = tf.summary.FileWriter(SUMMARY_PATH, graph=g)
            restore_variables(sess)
            total_ccc_v = 0
            total_ccc_a = 0
            total_ccc = 0
            total_mse_v = 0
            total_mse_a = 0
            total_mse = 0
            for i in range(NUM_BATCHES):
                try:
                    pred, lab = sess.run([prediction, label_batch])
                except tf.errors.OutOfRangeError:
                    break
                print 'prediction batch : ' + str(i)
                print pred
                conc_arousal = concordance_cc2(pred[:, 1], lab[:, 1])
                conc_valence = concordance_cc2(pred[:, 0], lab[:, 0])
                mse_arousal = sum((pred[:, 1] - lab[:, 1])**2) / len(lab[:, 1])
                mse_valence = sum((pred[:, 0] - lab[:, 0])**2) / len(lab[:, 0])
                total_ccc_v += conc_valence
                total_ccc_a += conc_arousal
                total_ccc += ((conc_valence + conc_valence) / 2.0)
                total_mse_v += (mse_valence)
                total_mse_a += (mse_arousal)
                total_mse += ((mse_arousal + mse_valence) / 2.0)
            print 'Finish read data'
            # add summary
            num_batches = float(NUM_BATCHES)
            # summary = tf.Summary()
            # summary.value.add(tag='eval/conc_valence', simple_value=float(total_ccc_v/num_batches))
            # summary.value.add(tag='eval/conc_arousal', simple_value=float(total_ccc_a/num_batches))
            # summary.value.add(tag='eval/conc_total', simple_value=float(total_ccc/num_batches))
            # summary.value.add(tag='eval/mse_arousal', simple_value=float(total_mse_a/num_batches))
            # summary.value.add(tag='eval/mse_valence', simple_value=float(total_mse_v/num_batches))
            #
            # eval_summary_writer.add_summary(summary, get_global_step(model_path))

            print '#####################Summary#######################'
            # print 'Evaluate model {}'.format(model_path)
            print 'Concordance on valence : {}'.format(
                float(total_ccc_v / num_batches))
            print 'Concordance on arousal : {}'.format(
                float(total_ccc_a / num_batches))
            print 'Concordance on total : {}'.format(
                float(total_ccc / num_batches))
            print 'MSE Arousal : {}'.format(float(total_mse_a / num_batches))
            print 'MSE Valence : {}'.format(float(total_mse_v / num_batches))
            print 'MSE TOTAL : {}'.format(float(total_mse / num_batches))