예제 #1
0
파일: __init__.py 프로젝트: timoMa/skneuro
def pmapWatershed(pmap, raw, visu=True, seedThreshold=0.6):

    viewGrayData = [(pmap, "pmap") ]
    viewLabelData= []



    print "densoise"

    pmapD = denoise.tvBregman(pmap, weight=4.5, isotropic=True).astype(numpy.float32)
    pmapG = vigra.filters.gaussianSmoothing(pmap, 1.0)

    viewGrayData.append((pmapG, "pmapGauss"))
    viewGrayData.append((pmapD, "pmapTotalVariation"))
    viewGrayData.append((raw, "raw"))

    #addHocViewer(viewGrayData, viewLabelData, visu=visu)

    print "compute local minima "




    localMin = vigra.analysis.extendedLocalMinima3D(pmapD,neighborhood=26)
    localMin2 = localMin.astype(numpy.float32)

    print "tweak min"
    localMin2 *= pmap



    whereZero = numpy.where(localMin == 0)
    localMin2[whereZero] = 100.0

    whereMin = numpy.where(localMin2 <= seedThreshold)

    filteredLocalMin = numpy.zeros(localMin.shape, dtype=numpy.uint8)
    filteredLocalMin[whereMin] = 1

    viewGrayData.append([localMin,"localMin"])
    viewGrayData.append([filteredLocalMin,"filteredLocalMin"])

    # compute connected components
    seeds = vigra.analysis.labelVolumeWithBackground(filteredLocalMin, neighborhood=26)

    viewLabelData.append([seeds, "seeds"])

    print "watersheds"
    seg, nseg = vigra.analysis.watersheds(pmapG.astype(numpy.float32), seeds=seeds.astype(numpy.uint32))

    print "nseg",nseg


    viewLabelData.append([seg, "seg"])
    addHocViewer(viewGrayData, viewLabelData, visu=visu)

    return se
예제 #2
0
def pmapWatershed(pmap, raw, visu=True, seedThreshold=0.6):

    viewGrayData = [(pmap, "pmap")]
    viewLabelData = []

    print "densoise"

    pmapD = denoise.tvBregman(pmap, weight=4.5,
                              isotropic=True).astype(numpy.float32)
    pmapG = vigra.filters.gaussianSmoothing(pmap, 1.0)

    viewGrayData.append((pmapG, "pmapGauss"))
    viewGrayData.append((pmapD, "pmapTotalVariation"))
    viewGrayData.append((raw, "raw"))

    #addHocViewer(viewGrayData, viewLabelData, visu=visu)

    print "compute local minima "

    localMin = vigra.analysis.extendedLocalMinima3D(pmapD, neighborhood=26)
    localMin2 = localMin.astype(numpy.float32)

    print "tweak min"
    localMin2 *= pmap

    whereZero = numpy.where(localMin == 0)
    localMin2[whereZero] = 100.0

    whereMin = numpy.where(localMin2 <= seedThreshold)

    filteredLocalMin = numpy.zeros(localMin.shape, dtype=numpy.uint8)
    filteredLocalMin[whereMin] = 1

    viewGrayData.append([localMin, "localMin"])
    viewGrayData.append([filteredLocalMin, "filteredLocalMin"])

    # compute connected components
    seeds = vigra.analysis.labelVolumeWithBackground(filteredLocalMin,
                                                     neighborhood=26)

    viewLabelData.append([seeds, "seeds"])

    print "watersheds"
    seg, nseg = vigra.analysis.watersheds(pmapG.astype(numpy.float32),
                                          seeds=seeds.astype(numpy.uint32))

    print "nseg", nseg

    viewLabelData.append([seg, "seg"])
    addHocViewer(viewGrayData, viewLabelData, visu=visu)

    return se
예제 #3
0
파일: __init__.py 프로젝트: timoMa/skneuro
def restrictedLocalMinima(image, minAllowed, neighborhood=26):
    """ discard any min where minAllowed[x,y,y]==0
    """
    localMin = vigra.analysis.extendedLocalMinima3D(numpy.ensure(image,dtype=numpy.float32),neighborhood=neighborhood)
    minNotAllowed = numpy.where(minAllowed==0)
    localMin[minNotAllowed]=0
    return localMin
예제 #4
0
def restrictedLocalMinima(image, minAllowed, neighborhood=26):
    """ discard any min where minAllowed[x,y,y]==0
    """
    localMin = vigra.analysis.extendedLocalMinima3D(numpy.ensure(
        image, dtype=numpy.float32),
                                                    neighborhood=neighborhood)
    minNotAllowed = numpy.where(minAllowed == 0)
    localMin[minNotAllowed] = 0
    return localMin
예제 #5
0
파일: __init__.py 프로젝트: timoMa/skneuro
def pmapSizeFilter(neuroCCBinaryPmap, minSize):
    """
    keywords:
        neuroCCBinaryPmap:  zero where membranes are
                            one where neurons are

    """
    shape = neuroCCBinaryPmap.shape


    # get the connected components 
    neuroCCMap  = vigra.analysis.labelVolume(neuroCCBinaryPmap)
    print "min max",neuroCCMap.min(), neuroCCMap.max()
    assert neuroCCMap.min() == 1
    neuroCCMap -= 1

    # get region adjacency graph from super-pixel labels
    gridGraph = graphs.gridGraph(shape[0:3])
    rag = graphs.regionAdjacencyGraph(gridGraph, neuroCCMap)

    # get all sizes
    nodeSizes = rag.nodeSize()


    # nodeColoring
    print "neuroCCBinaryPmap",neuroCCBinaryPmap.dtype,neuroCCBinaryPmap.shape
    nodeColor = rag.accumulateNodeFeatures(neuroCCBinaryPmap.astype('float32'))


    # find to small nodes
    toSmallNodesIds = numpy.where(nodeSizes<minSize)[0]
    toSmallNodesSizes = nodeSizes[toSmallNodesIds]
    toSmallNodesColor = nodeColor[toSmallNodesIds]

    sortedIndices = numpy.argsort(toSmallNodesSizes)
    sortedIndices.shape,sortedIndices
    toSmallNodesIds = toSmallNodesIds[sortedIndices]

    # todo (impl degree map as numpy array)

    for nid in toSmallNodesIds:

        neigbours = []
        for n in rag.neighbourNodeIter(rag.nodeFromId(nid)):
            neigbours.append(n)
        if len(neigbours)==1:
            # flip color
            nodeColor[nid] = int(not bool(nodeColor[nid]))

    pixelColor = rag.projectNodeFeaturesToGridGraph(nodeColor)
    return pixelColor,neuroCCBinaryPmap
예제 #6
0
def getValidRegionCentersAndTheirIDs(featureDict, 
                                     countFeatureName='Count', 
                                     regionCenterName='RegionCenter'):
    """
    From the feature dictionary of a certain frame, 
    find all objects with pixel count > 0, and return their
    region centers and ids.
    """
    validObjectMask = featureDict[countFeatureName] > 0
    validObjectMask[0] = False
    
    regionCenters = featureDict[regionCenterName][validObjectMask, :]
    objectIds = list(np.where(validObjectMask)[0])
    return regionCenters, objectIds
def getValidRegionCentersAndTheirIDs(featureDict, 
                                     countFeatureName='Count', 
                                     regionCenterName='RegionCenter'):
    """
    From the feature dictionary of a certain frame, 
    find all objects with pixel count > 0, and return their
    region centers and ids.
    """
    validObjectMask = featureDict[countFeatureName] > 0
    validObjectMask[0] = False
    
    regionCenters = featureDict[regionCenterName][validObjectMask, :]
    objectIds = list(np.where(validObjectMask)[0])
    return regionCenters, objectIds
예제 #8
0
파일: __init__.py 프로젝트: timoMa/skneuro
def pmapSizeFilter(neuroCCBinaryPmap, minSize):
    """
    keywords:
        neuroCCBinaryPmap:  zero where membranes are
                            one where neurons are

    """
    shape = neuroCCBinaryPmap.shape

    # get the connected components
    neuroCCMap = vigra.analysis.labelVolume(neuroCCBinaryPmap)
    print "min max", neuroCCMap.min(), neuroCCMap.max()
    assert neuroCCMap.min() == 1
    neuroCCMap -= 1

    # get region adjacency graph from super-pixel labels
    gridGraph = graphs.gridGraph(shape[0:3])
    rag = graphs.regionAdjacencyGraph(gridGraph, neuroCCMap)

    # get all sizes
    nodeSizes = rag.nodeSize()

    # nodeColoring
    print "neuroCCBinaryPmap", neuroCCBinaryPmap.dtype, neuroCCBinaryPmap.shape
    nodeColor = rag.accumulateNodeFeatures(neuroCCBinaryPmap.astype('float32'))

    # find to small nodes
    toSmallNodesIds = numpy.where(nodeSizes < minSize)[0]
    toSmallNodesSizes = nodeSizes[toSmallNodesIds]
    toSmallNodesColor = nodeColor[toSmallNodesIds]

    sortedIndices = numpy.argsort(toSmallNodesSizes)
    sortedIndices.shape, sortedIndices
    toSmallNodesIds = toSmallNodesIds[sortedIndices]

    # todo (impl degree map as numpy array)

    for nid in toSmallNodesIds:

        neigbours = []
        for n in rag.neighbourNodeIter(rag.nodeFromId(nid)):
            neigbours.append(n)
        if len(neigbours) == 1:
            # flip color
            nodeColor[nid] = int(not bool(nodeColor[nid]))

    pixelColor = rag.projectNodeFeaturesToGridGraph(nodeColor)
    return pixelColor, neuroCCBinaryPmap
def agglomerative_clustering_2d(img, labels, use_gradient = False):
	
	labels = vigra.analysis.labelImage(labels)
	
	imgBig = vigra.resize(img, [img.shape[0]*2-1, img.shape[1]*2-1])
	if use_gradient:
		# compute the gradient on interpolated image
		sigmaGradMag = 2.0
		gradMag = vigra.filters.gaussianGradientMagnitude(imgBig, sigmaGradMag)

	# get 2D grid graph and edgeMap for grid graph
	# from gradMag of interpolated image or from plain image (depending on use_gradient)
	gridGraph = vigra.graphs.gridGraph(img.shape[0:2])
	gridGraphEdgeIndicator = []
	if use_gradient:
		gridGraphEdgeIndicator = vigra.graphs.edgeFeaturesFromInterpolatedImage(gridGraph, gradMag)
	else:
		gridGraphEdgeIndicator = vigra.graphs.edgeFeaturesFromInterpolatedImage(gridGraph, imgBig)

	# get region adjacency graph from super-pixel labels
	rag = vigra.graphs.regionAdjacencyGraph(gridGraph, labels)

	# accumalate edge weights from gradient magintude
	edgeWeights = rag.accumulateEdgeFeatures(gridGraphEdgeIndicator)

	# agglomerative clustering
	beta = 0.5
	nodeNumStop = 20
	clustering = vigra.graphs.agglomerativeClustering(graph = rag, edgeWeights = edgeWeights,
					beta = beta, nodeNumStop = nodeNumStop)
	
	res = np.zeros( labels.shape )

	for c in range(len(clustering)):
		res[ np.where( labels== (c-1) ) ] = clustering[c]

	res = vigra.Image(res)
	res = vigra.analysis.labelImage(res)

	return res
예제 #10
0
파일: __init__.py 프로젝트: timoMa/skneuro
def volumeToListOfPoints(seedsVolume, threshold=0.):
    return numpy.array(numpy.where(seedsVolume > threshold)).transpose()
예제 #11
0
def volumeToListOfPoints(seedsVolume, threshold=0.):
    return numpy.array(numpy.where(seedsVolume > threshold)).transpose()