def test_weibull_i_cdf(weibull_shape, weibull_loc, weibull_scale): x = np.linspace(0, 1) ref_cdf = sts.weibull_min.ppf(x, weibull_shape(None), weibull_loc(None), weibull_scale(None)) dist = WeibullDistribution(weibull_shape, weibull_loc, weibull_scale) my_cdf = dist.i_cdf(x, x, (None, None, None)) assert np.allclose(ref_cdf, my_cdf)
def test_weibull_draw_sample(weibull_number, weibull_shape, weibull_loc, weibull_scale): ref_points = weibull_number dist = WeibullDistribution(weibull_shape, weibull_loc, weibull_scale) my_points = dist.draw_sample(weibull_number) my_points = my_points.size assert ref_points == my_points
def test_IForm3d(self): # TODO what does this test do """ Creating Contour example """ #define dependency tuple dep1 = (None, None, None) dep2 = (0, None, 0) dep3 = (0, None, 0) #define parameters shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) mu = FunctionParam(0.1000, 1.489, 0.1901, "f1") sigma = FunctionParam(0.0400, 0.1748, -0.2243, "f2") #del shape, loc, scale #create distributions dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(mu=mu, sigma=sigma) dist3 = LognormalDistribution(mu=mu, sigma=sigma) distributions = [dist1, dist2, dist3] dependencies = [dep1, dep2, dep3] mul_dist = MultivariateDistribution(distributions, dependencies) test_contour_IForm = IFormContour(mul_dist, 50, 3, 400)
def test_IForm3d(self): # TODO what does this test do """ 3-dimensional IFORM contour. """ # Define dependency tuple. dep1 = (None, None, None) dep2 = (0, None, 0) dep3 = (0, None, 0) # Define parameters. shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) mu = FunctionParam('power3', 0.1000, 1.489, 0.1901) sigma = FunctionParam('exp3', 0.0400, 0.1748, -0.2243) #del shape, loc, scale # Create distributions. dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(mu=mu, sigma=sigma) dist3 = LognormalDistribution(mu=mu, sigma=sigma) distributions = [dist1, dist2, dist3] dependencies = [dep1, dep2, dep3] mul_dist = MultivariateDistribution(distributions, dependencies) test_contour_IForm = IFormContour(mul_dist, 50, 3, 400)
def _setup(self, dep1=(None, None, None), dep2=(0, None, 0), par1=(ConstantParam(1.471), ConstantParam(0.8888), ConstantParam(2.776)), par2=(FunctionParam('exp3', 0.0400, 0.1748, -0.2243), None, FunctionParam('power3', 0.1, 1.489, 0.1901)) ): """ Creating contour. """ # Define dependency tuple. self.dep1 = dep1 self.dep2 = dep2 # Define parameters. self.par1 = par1 self.par2 = par2 # Create distributions. dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(sigma=par2[0], mu=par2[2]) distributions = [dist1, dist2] dependencies = [dep1, dep2] mul_dist = MultivariateDistribution(distributions, dependencies) # Calculate contour dsc = DirectSamplingContour(mul_dist, 10000000, 25, 6, 6) test_contour_dsc = dsc.direct_sampling_contour() return test_contour_dsc
def test_distribution_loc_None(self): """ Tests if loc is set to default when it has value 'None'. """ # Define parameters. shape = ConstantParam(0.8888) loc = None scale = ConstantParam(2.776) par1 = (shape, loc, scale) rv_values = [0.8, 1, 8] dependencies = (0, 1, 1) dist = WeibullDistribution(*par1) loc_test = dist._get_parameter_values(rv_values, dependencies)[1] self.assertEqual(loc_test, 0)
def test_multivariate_draw_sample(self): """ Create an example MultivariateDistribution (Vanem2012 model). """ # Define dependency tuple. dep1 = (None, None, None) dep2 = (0, None, 0) # Define parameters. shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) shape = FunctionParam('exp3', 0.0400, 0.1748, -0.2243) loc = None scale = FunctionParam('power3', 0.1, 1.489, 0.1901) par2 = (shape, loc, scale) del shape, loc, scale # Create distributions. dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(*par2) distributions = [dist1, dist2] dependencies = [dep1, dep2] ref_points = 99119 mul_var_dist = MultivariateDistribution(distributions, dependencies) my_points = mul_var_dist.draw_sample(ref_points) my_points0 = my_points[0].size my_points1 = my_points[1].size assert ref_points == my_points0 assert ref_points == my_points1
def test_weibull_param_out_of_bounds(weibull_param_name): dist = WeibullDistribution() setattr(dist, weibull_param_name, ConstantParam(-np.inf)) with pytest.raises(ValueError): dist.cdf([0, 100], [0, 100], (None, None, None)) dist = WeibullDistribution() setattr(dist, weibull_param_name, ConstantParam(np.inf)) with pytest.raises(ValueError): dist.cdf([0, 100], [0, 100], (None, None, None))
def setup_mul_dist(probabilistic_model: ProbabilisticModel): """ Generates a MultiVariateDistribution from a ProbabilisticModel. MultiVariateDistribution objects are used to perform the statistical computations in the viroconcom package. ProbabilisticModel objects are used in the viroconweb package to be saved in the data base. Parameters ---------- probabilistic_model : ProbabilisticModel, The probabilistic model, which should be converted. Returns ------- mutivar_distribution : MultivariateDistribution, The object, which can be used in the viroconcom package. """ distributions_model = DistributionModel.objects.filter( probabilistic_model=probabilistic_model) distributions = [] dependencies = [] for dist in distributions_model: dependency = [] parameters = [] parameters_model = ParameterModel.objects.filter(distribution=dist) for param in parameters_model: dependency.append(adjust(param.dependency)) if adjust(param.function) is not None: parameters.append( FunctionParam(float(param.x0), float(param.x1), float(param.x2), param.function)) else: parameters.append(ConstantParam(float(param.x0))) dependencies.append(dependency) if dist.distribution == 'Normal': distributions.append(NormalDistribution(*parameters)) elif dist.distribution == 'Weibull': distributions.append(WeibullDistribution(*parameters)) elif dist.distribution == 'Lognormal_SigmaMu': distributions.append( LognormalDistribution(sigma=parameters[0], mu=parameters[2])) elif dist.distribution == 'KernelDensity': distributions.append(KernelDensityDistribution(*parameters)) else: raise KeyError('{} is not a matching distribution'.format( dist.distribution)) mutivar_distribution = MultivariateDistribution(distributions, dependencies) return mutivar_distribution
def test_HDC3d_WLN(self): dep1 = (None, None, None) dep2 = (0, None, 0) dep3 = (None, 0, 0) #define parameters shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) shape = None loc = FunctionParam(4, 10, 0.02, "f1") scale = FunctionParam(0.1, 0.02, -0.1, "f2") par2 = (shape, loc, scale) mu = FunctionParam(0.1, 1.5, 0.2, "f1") sigma = FunctionParam(0.1, 0.2, -0.2, "f2") #create distributions dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(mu=mu, sigma=sigma) dist3 = NormalDistribution(*par2) distributions = [dist1, dist2, dist3] dependencies = [dep1, dep2, dep3] mul_dist = MultivariateDistribution(distributions, dependencies) del mu, sigma #del dist1, dist2, par1, par2, dep1, dep2, dependencies, distributions #calc contour n_years = 50 limits = [(0, 20), (0, 20), (0, 20)] deltas = [0.5, 0.5, 0.05] test_contour_HDC = HighestDensityContour(mul_dist, n_years, 3, limits, deltas) finaldt3 = pd.DataFrame({ 'x': test_contour_HDC.coordinates[0][0], 'y': test_contour_HDC.coordinates[0][1], 'z': test_contour_HDC.coordinates[0][2] }) matlab3 = pd.read_csv(testfiles_path + "/hdc3d_wln.csv", names=['x', 'y', 'z']) result3 = pd.read_csv(testfiles_path + "/HDC3dWLN_coordinates.csv") for m, n in [(m, n) for m in result3.index for n in result3.columns]: self.assertAlmostEqual(result3.loc[m, n], finaldt3.loc[m, n], places=8)
def test_draw_sample_distribution(self): """ Create an example MultivariateDistribution (Vanem2012 model). """ # Define dependency tuple. dep1 = (None, None, None) dep2 = (0, None, 0) # Define parameters. shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) shape = FunctionParam('exp3', 0.0400, 0.1748, -0.2243) loc = None scale = FunctionParam('power3', 0.1, 1.489, 0.1901) par2 = (shape, loc, scale) del shape, loc, scale # Create distributions. dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(*par2) distributions = [dist1, dist2] dependencies = [dep1, dep2] points = 1000000 mul_var_dist = MultivariateDistribution(distributions, dependencies) my_points = mul_var_dist.draw_sample(points) #Fit the sample # Describe the distribution that should be fitted to the sample. dist_description_0 = { 'name': 'Weibull', 'dependency': (None, None, None), 'width_of_intervals': 2 } dist_description_1 = { 'name': 'Lognormal', 'dependency': (0, None, 0), 'functions': ('exp3', None, 'power3') } my_fit = Fit([my_points[0], my_points[1]], [dist_description_0, dist_description_1]) print(my_fit.mul_var_dist.distributions[0].shape(0)) print(mul_var_dist.distributions[0].shape(0)) assert np.round(my_fit.mul_var_dist.distributions[0].shape(0), 2) == np.round(mul_var_dist.distributions[0].shape(0), 2)
def test_HDC2d_WL(self): """ 2-d HDC with Weibull and Lognormal distribution. The used probabilistic model is described in Vanem and Bitner-Gregersen (2012), DOI: 10.1016/j.apor.2012.05.006 """ #define dependency tuple dep1 = (None, None, None) dep2 = (0, None, 0) #define parameters shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) mu = FunctionParam(0.1000, 1.489, 0.1901, 'power3') sigma = FunctionParam(0.0400, 0.1748, -0.2243, 'exp3') #del shape, loc, scale #create distributions dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(mu=mu, sigma=sigma) distributions = [dist1, dist2] dependencies = [dep1, dep2] mul_dist = MultivariateDistribution(distributions, dependencies) #del dist1, dist2, par1, par2, dep1, dep2, dependencies, distributions #calc contour n_years = 50 limits = [(0, 20), (0, 18)] deltas = [0.1, 0.1] test_contour_HDC = HighestDensityContour(mul_dist, n_years, 3, limits, deltas) finaldt0 = pd.DataFrame({ 'x': test_contour_HDC.coordinates[0][0], 'y': test_contour_HDC.coordinates[0][1] }) result0 = pd.read_csv(testfiles_path + "/HDC2dWL_coordinates.csv") for g, h in [(g, h) for g in result0.index for h in result0.columns]: self.assertAlmostEqual(result0.loc[g, h], finaldt0.loc[g, h], places=8)
def test_HDC3d_WLL(self): """ Creating Contour example for 3-d HDC with Weibull, Lognormal and Lognormal distribution """ dep1 = (None, None, None) dep2 = (0, None, 0) dep3 = (0, None, 0) #define parameters shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) mu = FunctionParam(0.1000, 1.489, 0.1901, "f1") sigma = FunctionParam(0.0400, 0.1748, -0.2243, "f2") #del shape, loc, scale #create distributions dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(mu=mu, sigma=sigma) dist3 = LognormalDistribution(mu=mu, sigma=sigma) distributions = [dist1, dist2, dist3] dependencies = [dep1, dep2, dep3] mul_dist = MultivariateDistribution(distributions, dependencies) #del dist1, dist2, par1, par2, dep1, dep2, dependencies, distributions #calc contour n_years = 50 limits = [(0, 20), (0, 18), (0, 18)] deltas = [1, 1, 1] test_contour_HDC = HighestDensityContour(mul_dist, n_years, 3, limits, deltas) finaldt = pd.DataFrame({ 'x': test_contour_HDC.coordinates[0][0], 'y': test_contour_HDC.coordinates[0][1], 'z': test_contour_HDC.coordinates[0][2] }) result = pd.read_csv(testfiles_path + "/HDC3dWLL_coordinates.csv") for i, j in [(i, j) for i in result.index for j in result.columns]: self.assertAlmostEqual(result.loc[i, j], finaldt.loc[i, j], places=8)
def test_HDC2d_WN(self): """ Creating Contour example """ #define dependency tuple dep1 = (None, None, None) dep2 = (None, 0, 0) #define parameters shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) shape = None loc = FunctionParam(4, 10, 0.02, "f1") scale = FunctionParam(0.1, 0.02, -0.1, "f2") par2 = (shape, loc, scale) #del shape, loc, scale #create distributions dist1 = WeibullDistribution(*par1) dist2 = NormalDistribution(*par2) distributions = [dist1, dist2] dependencies = [dep1, dep2] mul_dist = MultivariateDistribution(distributions, dependencies) #del dist1, dist2, par1, par2, dep1, dep2, dependencies, distributions #calc contour n_years = 50 limits = [(0, 20), (0, 20)] deltas = [0.05, 0.01] test_contour_HDC = HighestDensityContour(mul_dist, n_years, 3, limits, deltas) finaldt2 = pd.DataFrame({ 'x': test_contour_HDC.coordinates[0][0], 'y': test_contour_HDC.coordinates[0][1] }) result2 = pd.read_csv(testfiles_path + "/HDC2dWN_coordinates.csv") for k, l in [(k, l) for k in result2.index for l in result2.columns]: self.assertAlmostEqual(result2.loc[k, l], finaldt2.loc[k, l], places=8)
def test_IForm2d_WL(self): """ 2-d IFORM contour. The used probabilistic model is described in Vanem and Bitner-Gregersen (2012), DOI: 10.1016/j.apor.2012.05.006 """ # Define dependency tuple dep1 = (None, None, None) dep2 = (0, None, 0) # Define parameters shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) mu = FunctionParam(0.1000, 1.489, 0.1901, "power3") sigma = FunctionParam(0.0400, 0.1748, -0.2243, "exp3") # Create distributions dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(mu=mu, sigma=sigma) distributions = [dist1, dist2] dependencies = [dep1, dep2] mul_dist = MultivariateDistribution(distributions, dependencies) test_contour_IForm = IFormContour(mul_dist, 50, 3, 50) calculated_coordinates = pd.DataFrame({ 'x': test_contour_IForm.coordinates[0][0], 'y': test_contour_IForm.coordinates[0][1] }) #calculated_coordinates.to_csv('save_this_file.csv', sep=',', header=['x', 'y'], index=False) true_coordinates = pd.read_csv(testfiles_path + "/IForm2dWL_coordinates.csv") for o, p in [(o, p) for o in true_coordinates.index for p in true_coordinates.columns]: self.assertAlmostEqual(calculated_coordinates.loc[o, p], true_coordinates.loc[o, p], places=8)
def test_IForm2d_WN(self): """ 2-d IFORM contour. """ # Define dependency tuple. dep1 = (None, None, None) dep2 = (None, 0, 0) # Define parameters. shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) shape = None loc = FunctionParam(7, 1.489, 0.1901, "power3") scale = FunctionParam(1.5, 0.1748, -0.2243, "exp3") par2 = (shape, loc, scale) # Create distributions. dist1 = WeibullDistribution(*par1) dist2 = NormalDistribution(*par2) distributions = [dist1, dist2] dependencies = [dep1, dep2] mul_dist = MultivariateDistribution(distributions, dependencies) test_contour_IForm = IFormContour(mul_dist, 50, 3, 50) calculated_coordinates = pd.DataFrame({ 'x': test_contour_IForm.coordinates[0][0], 'y': test_contour_IForm.coordinates[0][1] }) true_coordinates = pd.read_csv(testfiles_path + "/IForm2dWN_coordinates.csv") for r, s in [(r, s) for r in true_coordinates.index for s in true_coordinates.columns]: self.assertAlmostEqual(calculated_coordinates.loc[r, s], true_coordinates.loc[r, s], places=8)
def test_IForm2d_WN(self): """ Creating Contour example """ #define dependency tuple dep1 = (None, None, None) dep2 = (None, 0, 0) #define parameters shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) shape = None loc = FunctionParam(7, 1.489, 0.1901, "f1") scale = FunctionParam(1.5, 0.1748, -0.2243, "f2") par2 = (shape, loc, scale) #del shape, loc, scale #create distributions dist1 = WeibullDistribution(*par1) dist2 = NormalDistribution(*par2) distributions = [dist1, dist2] dependencies = [dep1, dep2] mul_dist = MultivariateDistribution(distributions, dependencies) test_contour_IForm = IFormContour(mul_dist, 50, 3, 400) finaldt5 = pd.DataFrame({ 'x': test_contour_IForm.coordinates[0][0], 'y': test_contour_IForm.coordinates[0][1] }) result5 = pd.read_csv(testfiles_path + "/IForm2dWN_coordinates.csv") for r, s in [(r, s) for r in result5.index for s in result5.columns]: self.assertAlmostEqual(result5.loc[r, s], finaldt5.loc[r, s], places=8)
def test_HDC4d_WLLL(self): """ Creating Contour example for 4-d HDC with Weibull, Lognormal, Lognormal and Lognormal distribution """ #define dependency tuple dep1 = (None, None, None) dep2 = (0, None, 0) dep3 = (0, None, 0) dep4 = (0, None, 0) #define parameters shape = ConstantParam(2.776) loc = ConstantParam(1.471) scale = ConstantParam(0.8888) par1 = (shape, loc, scale) mu = FunctionParam(0.1000, 1.489, 0.1901, "f1") sigma = FunctionParam(0.0400, 0.1748, -0.2243, "f2") #create distributions dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(mu=mu, sigma=sigma) dist3 = LognormalDistribution(mu=mu, sigma=sigma) dist4 = LognormalDistribution(mu=mu, sigma=sigma) distributions = [dist1, dist2, dist3, dist4] dependencies = [dep1, dep2, dep3, dep4] mul_dist = MultivariateDistribution(distributions, dependencies) #del dist1, dist2, par1, par2, dep1, dep2, dependencies, distributions #calc contour n_years = 50 limits = [(0, 20), (0, 18), (0, 18), (0, 18)] deltas = [1, 1, 1, 1] test_contour_HDC = HighestDensityContour(mul_dist, n_years, 3, limits, deltas)
def _setup(self, limits=[(0, 20), (0, 20)], deltas=[0.05, 0.05], n_years = 25, dep1=(None, None, None), dep2=(0, None, 0), par1=(ConstantParam(1.471), ConstantParam(0.8888), ConstantParam(2.776)), par2=(FunctionParam('exp3', 0.0400, 0.1748, -0.2243), None, FunctionParam('power3', 0.1, 1.489, 0.1901)) ): """ Creating a contour (same as in DOI: 10.1016/j.coastaleng.2017.03.002). """ self.limits = limits self.deltas = deltas self.n_years = n_years # Define dependency tuple. self.dep1 = dep1 self.dep2 = dep2 # Define parameters. self.par1 = par1 self.par2 = par2 # Create distributions. dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(*par2) distributions = [dist1, dist2] dependencies = [dep1, dep2] mul_dist = MultivariateDistribution(distributions, dependencies) # Compute contour. test_contour_HDC = HighestDensityContour(mul_dist, n_years, 3, limits, deltas) return test_contour_HDC
def test_HDC4d_WLLL(self): """ Contour example for a 4-dimensinal HDC with Weibull, Lognormal, Lognormal and Lognormal distribution. """ # Define dependency tuple. dep1 = (None, None, None) dep2 = (0, None, 0) dep3 = (0, None, 0) dep4 = (0, None, 0) # Define parameters. shape = ConstantParam(2.776) loc = ConstantParam(1.471) scale = ConstantParam(0.8888) par1 = (shape, loc, scale) mu = FunctionParam('power3', 0.1000, 1.489, 0.1901) sigma = FunctionParam('exp3', 0.0400, 0.1748, -0.2243) # Create distributions. dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(mu=mu, sigma=sigma) dist3 = LognormalDistribution(mu=mu, sigma=sigma) dist4 = LognormalDistribution(mu=mu, sigma=sigma) distributions = [dist1, dist2, dist3, dist4] dependencies = [dep1, dep2, dep3, dep4] mul_dist = MultivariateDistribution(distributions, dependencies) # Compute contour. n_years = 50 limits = [(0, 20), (0, 18), (0, 18), (0, 18)] deltas = [1, 1, 1, 1] test_contour_HDC = HighestDensityContour(mul_dist, n_years, 3, limits, deltas)
def test_plot_contour_without_sample(self): """ Plots a contour in the most basic way. """ # Define dependency tuple. dep1 = (None, None, None) dep2 = (0, None, 0) # Define parameters. shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) mu = FunctionParam('power3', 0.1000, 1.489, 0.1901) sigma = FunctionParam('exp3', 0.0400, 0.1748, -0.2243) # Create distributions. dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(mu=mu, sigma=sigma) distributions = [dist1, dist2] dependencies = [dep1, dep2] mul_dist = MultivariateDistribution(distributions, dependencies) test_contour_IForm = IFormContour(mul_dist, 50, 3, 50) contour_hs = test_contour_IForm.coordinates[0][0] contour_tz = test_contour_IForm.coordinates[0][1] fig = plt.figure() ax = fig.add_subplot(111) plot_contour(contour_hs, contour_tz, ax) #plt.show() x_plot, y_plot = ax.lines[0].get_xydata().T self.assertAlmostEqual(y_plot[0], contour_tz[0], delta=0.001)
def test_IForm2d_WL(self): """ Creating Contour example """ #define dependency tuple dep1 = (None, None, None) dep2 = (0, None, 0) #define parameters shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) mu = FunctionParam(0.1000, 1.489, 0.1901, "f1") sigma = FunctionParam(0.0400, 0.1748, -0.2243, "f2") #create distributions dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(mu=mu, sigma=sigma) distributions = [dist1, dist2] dependencies = [dep1, dep2] mul_dist = MultivariateDistribution(distributions, dependencies) test_contour_IForm = IFormContour(mul_dist, 50, 3, 400) finaldt4 = pd.DataFrame({ 'x': test_contour_IForm.coordinates[0][0], 'y': test_contour_IForm.coordinates[0][1] }) result4 = pd.read_csv(testfiles_path + "/IForm2dWL_coordinates.csv") for o, p in [(o, p) for o in result4.index for p in result4.columns]: self.assertAlmostEqual(result4.loc[o, p], finaldt4.loc[o, p], places=8)
def _setup(self, limits=[(0, 20), (0, 20)], deltas=[0.05, 0.05], n_years=25, dep1=(None, None, None), dep2=(0, None, 0), par1=(ConstantParam(1.471), ConstantParam(0.8888), ConstantParam(2.776)), par2=(FunctionParam(0.0400, 0.1748, -0.2243, "f2"), None, FunctionParam(0.1, 1.489, 0.1901, "f1"))): """ Creating Contour example """ self.limits = limits self.deltas = deltas self.n_years = n_years #define dependency tuple self.dep1 = dep1 self.dep2 = dep2 #define parameters self.par1 = par1 self.par2 = par2 #create distributions dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(*par2) distributions = [dist1, dist2] dependencies = [dep1, dep2] mul_dist = MultivariateDistribution(distributions, dependencies) #calc contour test_contour_HDC = HighestDensityContour(mul_dist, n_years, 3, limits, deltas) return test_contour_HDC
def test_check_parameter_value(self): """ Tests if the right exception is raised when the given parameters are not in the valid range of numbers. """ shape = None loc = ConstantParam(0.8888) scale = ConstantParam(-2.776) par1 = (shape, loc, scale) dist = WeibullDistribution(*par1) with self.assertRaises(ValueError): dist._check_parameter_value(2, -2.776) with self.assertRaises(ValueError): dist._check_parameter_value(2, np.inf)
from viroconcom.params import ConstantParam, FunctionParam from viroconcom.distributions import WeibullDistribution, LognormalDistribution, \ MultivariateDistribution from viroconcom.contours import IFormContour, ISormContour, HighestDensityContour import matplotlib.pyplot as plt # Define the multivariate distribution given in the paper by Vanem and # Bitner-Gregersen (2012; doi: 10.1016/j.apor.2012.05.006) shape = ConstantParam(1.471) loc = ConstantParam(0.889) scale = ConstantParam(2.776) dist0 = WeibullDistribution(shape, loc, scale) dep0 = (None, None, None) # All three parameters are independent. my_sigma = FunctionParam('exp3', 0.040, 0.175, -0.224) my_mu = FunctionParam('power3', 0.100, 1.489, 0.190) dist1 = LognormalDistribution(sigma=my_sigma, mu=my_mu) dep1 = (0, None, 0) # Parameter one and three depend on dist0. distributions = [dist0, dist1] dependencies = [dep0, dep1] mul_dist = MultivariateDistribution(distributions, dependencies) # Compute an IFORM, an ISORM and a highest density contour. return_period = 50 # In years sea_state_duration = 6 # In hours iform_contour = IFormContour(mul_dist, return_period, sea_state_duration, 100) isorm_contour = ISormContour(mul_dist, return_period, sea_state_duration, 100) limits = [(0, 20), (0, 20)] # Limits of the computational domain deltas = [0.005, 0.005] # Dimensions of the grid cells hdens_contour = HighestDensityContour( mul_dist, return_period, sea_state_duration, limits, deltas)
# Define a hs - steepness bivariate model dist_description_hs = { 'name': 'Weibull_Exp' } # Order: shape, loc, scale, shape2 dist_description_s = {'name': 'Weibull_3p'} from scipy.stats import weibull_min from viroconcom.distributions import WeibullDistribution from viroconcom.distributions import ExponentiatedWeibullDistribution from viroconcom.distributions import MultivariateDistribution from viroconcom.params import FunctionParam params = weibull_min.fit(steepness, floc=0.005) my_loc = FunctionParam('poly1', 0.0015, 0.002, None) dist_s = WeibullDistribution(shape=params[0], loc=my_loc, scale=params[2]) dist_hs = ExponentiatedWeibullDistribution() dist_hs.fit(hs) joint_dist = MultivariateDistribution(distributions=[dist_hs, dist_s], dependencies=[(None, None, None, None), (None, 0, None)]) # Fit the model to the data. #fit = Fit((hs, steepness), # (dist_description_hs, dist_description_s)) #joint_dist = fit.mul_var_dist trs = [1, 50, 250] fms = np.empty(shape=(3, 1)) for i, tr in enumerate(trs): HDC = HighestDensityContour(joint_dist,
class MultivariateDistributionTest(unittest.TestCase): """ Create an example MultivariateDistribution (Vanem2012 model). """ # Define dependency tuple. dep1 = (None, 0, None) dep2 = (0, None, 0) # Define parameters. shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) shape = FunctionParam(0.0400, 0.1748, -0.2243, "exp3") loc = None scale = FunctionParam(0.1, 1.489, 0.1901, "power3") par2 = (shape, loc, scale) del shape, loc, scale # Create distributions. dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(*par2) distributions = [dist1, dist2] dependencies = [dep1, dep2] def test_add_distribution_err_msg(self): """ Tests if the right exception is raised when distribution1 has a dependency. """ with self.assertRaises(ValueError): MultivariateDistribution(self.distributions, self.dependencies) def test_add_distribution_iter(self): """ Tests if an exception is raised by the function add_distribution when distributions isn't iterable but dependencies is and the other way around. """ distributions = 1 with self.assertRaises(ValueError): MultivariateDistribution(distributions, self.dependencies) dependencies = 0 with self.assertRaises(ValueError): MultivariateDistribution(self.distributions, dependencies) def test_add_distribution_length(self): """ Tests if an exception is raised when distributions and dependencies are of unequal length. """ dep3 = (0, None, None) dependencies = [self.dep1, self.dep2, dep3] with self.assertRaises(ValueError): MultivariateDistribution(self.distributions, dependencies) def test_add_distribution_dependencies_length(self): """ Tests if an exception is raised when a tuple in dependencies has not length 3. """ dep1 = (None, None) dependencies = [dep1, self.dep2] with self.assertRaises(ValueError): MultivariateDistribution(self.distributions, dependencies) def test_add_distribution_dependencies_value(self): """ Tests if an exception is raised when dependencies has an invalid value. """ dep1 = (-3, None, None) dependencies = [dep1, self.dep2] with self.assertRaises(ValueError): MultivariateDistribution(self.distributions, dependencies) def test_add_distribution_not_iterable(self): """ Tests the function when both distributions and dependencies are not iterable. """ distributions = 1 dependencies = 2 with self.assertRaises(ValueError): MultivariateDistribution(distributions, dependencies) def test_latex_representation(self): """ Tests if the latex representation is correct. """ dep1 = (None, None, None) dep2 = (0, None, 0) dependencies = [dep1, dep2] m = MultivariateDistribution(self.distributions, dependencies) computed_latex = m.latex_repr(['Hs', 'Tp']) correct_latex = \ ['\\text{ joint PDF: }', 'f(h_{s},t_{p})=f_{H_{s}}(h_{s})f_{T_{p}|H_{s}}(t_{p}|h_{s})', '', '1\\text{. variable, }H_{s}: ', 'f_{H_{s}}(h_{s})=\\dfrac{\\beta_{h_{s}}}{\\alpha_{h_{s}}}' '\\left(\\dfrac{h_{s}-\\gamma_{h_{s}}}{\\alpha_{h_{s}}}' '\\right)^{\\beta_{h_{s}}-1}\\exp\\left[-\\left(\\dfrac{h_{s}-' '\\gamma_{h_{s}}}{\\alpha_{h_{s}}}\\right)^{\\beta_{h_{s}}}\\right]', '\\quad\\text{ with }\\alpha_{h_{s}}=2.776,', '\\quad\\qquad\\;\\; \\beta_{h_{s}}=1.471,', '\\quad\\qquad\\;\\; \\gamma_{h_{s}}=0.8888.', '', '2\\text{. variable, }T_{p}: ', 'f_{T_{p}|H_{s}}(t_{p}|h_{s})=\\dfrac{1}{t_{p}\\tilde{\\sigma}_' '{t_{p}}\\sqrt{2\\pi}}\\exp\\left[-\\dfrac{(\\ln t_{p}-\\tilde{' '\\mu}_{t_{p}})^2}{2\\tilde{\\sigma}_{t_{p}}^2}\\right]', '\\quad\\text{ with }\\exp{\\tilde{\\mu}}_{t_{p}}=' '0.1+1.489h_{s}^{0.1901},', '\\quad\\qquad\\;\\; \\tilde{\\sigma}_{t_{p}}=' '0.04+0.1748e^{-0.2243h_{s}}.'] assert (computed_latex, correct_latex)
class MultivariateDistributionTest(unittest.TestCase): """ Create an example MultivariateDistribution (Vanem2012 model). """ # Define dependency tuple. dep1 = (None, 0, None) dep2 = (0, None, 0) # Define parameters. shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) shape = FunctionParam('exp3', 0.0400, 0.1748, -0.2243) loc = None scale = FunctionParam('power3', 0.1, 1.489, 0.1901) par2 = (shape, loc, scale) del shape, loc, scale # Create distributions. dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(*par2) distributions = [dist1, dist2] dependencies = [dep1, dep2] def test_add_distribution_err_msg(self): """ Tests if the right exception is raised when distribution1 has a dependency. """ with self.assertRaises(ValueError): MultivariateDistribution(self.distributions, self.dependencies) def test_multivariate_draw_sample(self): """ Create an example MultivariateDistribution (Vanem2012 model). """ # Define dependency tuple. dep1 = (None, None, None) dep2 = (0, None, 0) # Define parameters. shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) shape = FunctionParam('exp3', 0.0400, 0.1748, -0.2243) loc = None scale = FunctionParam('power3', 0.1, 1.489, 0.1901) par2 = (shape, loc, scale) del shape, loc, scale # Create distributions. dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(*par2) distributions = [dist1, dist2] dependencies = [dep1, dep2] ref_points = 99119 mul_var_dist = MultivariateDistribution(distributions, dependencies) my_points = mul_var_dist.draw_sample(ref_points) my_points0 = my_points[0].size my_points1 = my_points[1].size assert ref_points == my_points0 assert ref_points == my_points1 def test_draw_sample_distribution(self): """ Create an example MultivariateDistribution (Vanem2012 model). """ # Define dependency tuple. dep1 = (None, None, None) dep2 = (0, None, 0) # Define parameters. shape = ConstantParam(1.471) loc = ConstantParam(0.8888) scale = ConstantParam(2.776) par1 = (shape, loc, scale) shape = FunctionParam('exp3', 0.0400, 0.1748, -0.2243) loc = None scale = FunctionParam('power3', 0.1, 1.489, 0.1901) par2 = (shape, loc, scale) del shape, loc, scale # Create distributions. dist1 = WeibullDistribution(*par1) dist2 = LognormalDistribution(*par2) distributions = [dist1, dist2] dependencies = [dep1, dep2] points = 1000000 mul_var_dist = MultivariateDistribution(distributions, dependencies) my_points = mul_var_dist.draw_sample(points) #Fit the sample # Describe the distribution that should be fitted to the sample. dist_description_0 = { 'name': 'Weibull', 'dependency': (None, None, None), 'width_of_intervals': 2 } dist_description_1 = { 'name': 'Lognormal', 'dependency': (0, None, 0), 'functions': ('exp3', None, 'power3') } my_fit = Fit([my_points[0], my_points[1]], [dist_description_0, dist_description_1]) print(my_fit.mul_var_dist.distributions[0].shape(0)) print(mul_var_dist.distributions[0].shape(0)) assert np.round(my_fit.mul_var_dist.distributions[0].shape(0), 2) == np.round(mul_var_dist.distributions[0].shape(0), 2) def test_add_distribution_iter(self): """ Tests if an exception is raised by the function add_distribution when distributions isn't iterable but dependencies is and the other way around. """ distributions = 1 with self.assertRaises(ValueError): MultivariateDistribution(distributions, self.dependencies) dependencies = 0 with self.assertRaises(ValueError): MultivariateDistribution(self.distributions, dependencies) def test_add_distribution_length(self): """ Tests if an exception is raised when distributions and dependencies are of unequal length. """ dep3 = (0, None, None) dependencies = [self.dep1, self.dep2, dep3] with self.assertRaises(ValueError): MultivariateDistribution(self.distributions, dependencies) def test_add_distribution_dependencies_length(self): """ Tests if an exception is raised when a tuple in dependencies has not length 3. """ dep1 = (None, None) dependencies = [dep1, self.dep2] with self.assertRaises(ValueError): MultivariateDistribution(self.distributions, dependencies) def test_add_distribution_dependencies_value(self): """ Tests if an exception is raised when dependencies has an invalid value. """ dep1 = (-3, None, None) dependencies = [dep1, self.dep2] with self.assertRaises(ValueError): MultivariateDistribution(self.distributions, dependencies) def test_add_distribution_not_iterable(self): """ Tests the function when both distributions and dependencies are not iterable. """ distributions = 1 dependencies = 2 with self.assertRaises(ValueError): MultivariateDistribution(distributions, dependencies) def test_latex_representation(self): """ Tests if the latex representation is correct. """ dep1 = (None, None, None) dep2 = (0, None, 0) dependencies = [dep1, dep2] m = MultivariateDistribution(self.distributions, dependencies) computed_latex = m.latex_repr(['Hs', 'Tp']) correct_latex = \ ['\\text{ joint PDF: }', 'f(h_{s},t_{p})=f_{H_{s}}(h_{s})f_{T_{p}|H_{s}}(t_{p}|h_{s})', '', '1\\text{. variable, }H_{s}: ', 'f_{H_{s}}(h_{s})=\\dfrac{\\beta_{h_{s}}}{\\alpha_{h_{s}}}' '\\left(\\dfrac{h_{s}-\\gamma_{h_{s}}}{\\alpha_{h_{s}}}' '\\right)^{\\beta_{h_{s}}-1}\\exp\\left[-\\left(\\dfrac{h_{s}-' '\\gamma_{h_{s}}}{\\alpha_{h_{s}}}\\right)^{\\beta_{h_{s}}}\\right]', '\\quad\\text{ with }\\alpha_{h_{s}}=2.776,', '\\quad\\qquad\\;\\; \\beta_{h_{s}}=1.471,', '\\quad\\qquad\\;\\; \\gamma_{h_{s}}=0.8888.', '', '2\\text{. variable, }T_{p}: ', 'f_{T_{p}|H_{s}}(t_{p}|h_{s})=\\dfrac{1}{t_{p}\\tilde{\\sigma}_' '{t_{p}}\\sqrt{2\\pi}}\\exp\\left[-\\dfrac{(\\ln t_{p}-\\tilde{' '\\mu}_{t_{p}})^2}{2\\tilde{\\sigma}_{t_{p}}^2}\\right]', '\\quad\\text{ with }\\exp{\\tilde{\\mu}}_{t_{p}}=' '0.1+1.489h_{s}^{0.1901},', '\\quad\\qquad\\;\\; \\tilde{\\sigma}_{t_{p}}=' '0.04+0.1748e^{-0.2243h_{s}}.'] assert computed_latex, correct_latex