def main(): parser = argparse.ArgumentParser(description="Test quasi potential") parser.add_argument("--show", "--plot", action="store_true") args = vutil.common_argparse(parser) b, e = make_arcade(8.0, N=[64, 64, 64]) epar = viscid.project(e, b) epar.pretty_name = "E parallel" ############### # Calculate Xi seeds = viscid.Volume(xl=[-10, 0.0, -10], xh=[10, 0.0, 10], n=[64, 1, 64]) b_lines, _ = viscid.calc_streamlines(b, seeds) xi_dat = viscid.integrate_along_lines(b_lines, e, reduction='dot') xi = seeds.wrap_field(xi_dat, name='xi', pretty_name=r"$\Xi$") ################################ # Make 2D Matplotlib plot of Xi mpl.plot(xi, x=(-10, 10), y=(-10, 10), style='contourf', levels=256, lin=(2e-4, 1.5718)) mpl.plot(xi, x=(-10, 10), y=(-10, 10), style='contour', colors='grey', levels=[0.5, 1.0]) mpl.savefig(next_plot_fname(__file__)) if args.show: mpl.show() ############################################################ # Make 3D mayavi plot of Xi and the 'brightest' field lines # as well as some other field lines for context try: from viscid.plot import mvi except ImportError: xfail("Mayavi not installed") mvi.figure(size=[1200, 800], offscreen=not args.show) inds = np.argsort(xi_dat)[-64:] inds = np.concatenate([inds, np.arange(len(xi_dat))[::71]]) s = mvi.plot_lines(b_lines[inds], scalars=epar, cmap='viridis') mvi.mesh_from_seeds(seeds, scalars=xi, cmap='inferno') mvi.colorbar(s, orientation='horizontal', title=epar.pretty_name) # mvi.streamline(b, scalars=e, seedtype='sphere', seed_resolution=4, # integration_direction='both') oa = mvi.orientation_axes() oa.marker.set_viewport(0.75, 0.75, 1.0, 1.0) mvi.view(roll=0, azimuth=90, elevation=25, distance=30.0, focalpoint=[0, 2, 0]) mvi.savefig(next_plot_fname(__file__)) if args.show: mvi.show()
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") parser.add_argument("--interact", "-i", action="store_true") args = vutil.common_argparse(parser) f3d = viscid.load_file(os.path.join(sample_dir, 'sample_xdmf.3d.[0].xdmf')) f_iono = viscid.load_file(os.path.join(sample_dir, "sample_xdmf.iof.[0].xdmf")) b = f3d["b"] v = f3d["v"] pp = f3d["pp"] e = f3d["e_cc"] vlab.figure(size=(1280, 800), offscreen=not args.show) ########################################################## # make b a dipole inside 3.1Re and set e = 0 inside 4.0Re cotr = viscid.Cotr(time='1990-03-21T14:48', dip_tilt=0.0) # pylint: disable=not-callable moment = cotr.get_dipole_moment(crd_system=b) isphere_mask = viscid.make_spherical_mask(b, rmax=3.1) viscid.fill_dipole(b, m=moment, mask=isphere_mask) e_mask = viscid.make_spherical_mask(b, rmax=4.0) viscid.set_in_region(e, 0.0, alpha=0.0, mask=e_mask, out=e) ###################################### # plot a scalar cut plane of pressure pp_src = vlab.field2source(pp, center='node') scp = vlab.scalar_cut_plane(pp_src, plane_orientation='z_axes', opacity=0.5, transparent=True, view_controls=False, cmap="inferno", logscale=True) scp.implicit_plane.normal = [0, 0, -1] scp.implicit_plane.origin = [0, 0, 0] scp.enable_contours = True scp.contour.filled_contours = True scp.contour.number_of_contours = 64 cbar = vlab.colorbar(scp, title=pp.name, orientation='vertical') cbar.scalar_bar_representation.position = (0.01, 0.13) cbar.scalar_bar_representation.position2 = (0.08, 0.76) ###################################### # plot a vector cut plane of the flow vcp = vlab.vector_cut_plane(v, scalars=pp_src, plane_orientation='z_axes', view_controls=False, mode='arrow', cmap='Greens_r') vcp.implicit_plane.normal = [0, 0, -1] vcp.implicit_plane.origin = [0, 0, 0] ############################## # plot very faint isosurfaces vx_src = vlab.field2source(v['x'], center='node') iso = vlab.iso_surface(vx_src, contours=[0.0], opacity=0.008, cmap='Pastel1') ############################################################## # calculate B field lines && topology in Viscid and plot them seedsA = viscid.SphericalPatch([0, 0, 0], [2, 0, 1], 30, 15, r=5.0, nalpha=5, nbeta=5) seedsB = viscid.SphericalPatch([0, 0, 0], [1.9, 0, -20], 30, 15, r=5.0, nalpha=1, nbeta=5) seeds = np.concatenate([seedsA, seedsB], axis=1) b_lines, topo = viscid.calc_streamlines(b, seeds, ibound=3.5, obound0=[-25, -20, -20], obound1=[15, 20, 20], wrap=True) vlab.plot_lines(b_lines, scalars=viscid.topology2color(topo)) ###################################################################### # plot a random circle at geosynchronus orbit with scalars colored # by the Matplotlib viridis color map, just because we can; this is # a useful toy for debugging circle = viscid.Circle(p0=[0, 0, 0], r=6.618, n=128, endpoint=True) scalar = np.sin(circle.as_local_coordinates().get_crd('phi')) surf = vlab.plot_line(circle.get_points(), scalars=scalar, clim=0.8, cmap="Spectral_r") ###################################################################### # Use Mayavi (VTK) to calculate field lines using an interactive seed # These field lines are colored by E parallel epar = viscid.project(e, b) epar.name = "Epar" bsl2 = vlab.streamline(b, epar, seedtype='plane', seed_resolution=4, integration_direction='both', clim=(-0.05, 0.05)) # now tweak the VTK streamlines bsl2.stream_tracer.maximum_propagation = 20. bsl2.seed.widget.origin = [-11, -5.0, -2.0] bsl2.seed.widget.point1 = [-11, 5.0, -2.0] bsl2.seed.widget.point2 = [-11.0, -5.0, 2.0] bsl2.streamline_type = 'tube' bsl2.tube_filter.radius = 0.03 bsl2.stop() # this stop/start was a hack to get something to update bsl2.start() bsl2.seed.widget.enabled = False cbar = vlab.colorbar(bsl2, title=epar.name, label_fmt='%.3f', orientation='horizontal') cbar.scalar_bar_representation.position = (0.15, 0.01) cbar.scalar_bar_representation.position2 = (0.72, 0.10) ############################################################### # Make a contour at the open-closed boundary in the ionosphere seeds_iono = viscid.Sphere(r=1.063, pole=-moment, ntheta=256, nphi=256, thetalim=(0, 180), philim=(0, 360), crd_system=b) _, topo_iono = viscid.calc_streamlines(b, seeds_iono, ibound=1.0, nr_procs='all', output=viscid.OUTPUT_TOPOLOGY) topo_iono = np.log2(topo_iono) m = vlab.mesh_from_seeds(seeds_iono, scalars=topo_iono, opacity=1.0, clim=(0, 3), color=(0.992, 0.445, 0.0)) m.enable_contours = True m.actor.property.line_width = 4.0 m.contour.number_of_contours = 4 #################################################################### # Plot the ionosphere, note that the sample data has the ionosphere # at a different time, so the open-closed boundary found above # will not be consistant with the field aligned currents fac_tot = 1e9 * f_iono['fac_tot'] m = vlab.plot_ionosphere(fac_tot, bounding_lat=30.0, vmin=-300, vmax=300, opacity=0.75, rotate=cotr, crd_system=b) m.actor.property.backface_culling = True ######################################################################## # Add some markers for earth, i.e., real earth, and dayside / nightside # representation vlab.plot_blue_marble(r=1.0, lines=False, ntheta=64, nphi=128, rotate=cotr, crd_system=b) # now shade the night side with a transparent black hemisphere vlab.plot_earth_3d(radius=1.01, night_only=True, opacity=0.5, crd_system=b) #################### # Finishing Touches # vlab.axes(pp_src, nb_labels=5) oa = vlab.orientation_axes() oa.marker.set_viewport(0.75, 0.75, 1.0, 1.0) # note that resize won't work if the current figure has the # off_screen_rendering flag set # vlab.resize([1200, 800]) vlab.view(azimuth=45, elevation=70, distance=35.0, focalpoint=[-2, 0, 0]) ############## # Save Figure # print("saving png") # vlab.savefig('mayavi_msphere_sample.png') # print("saving x3d") # # x3d files can be turned into COLLADA files with meshlab, and # # COLLADA (.dae) files can be opened in OS X's preview # # # # IMPORTANT: for some reason, using bounding_lat in vlab.plot_ionosphere # # causes a segfault when saving x3d files # # # vlab.savefig('mayavi_msphere_sample.x3d') # print("done") vlab.savefig(next_plot_fname(__file__)) ########################### # Interact Programatically if args.interact: vlab.interact() ####################### # Interact Graphically if args.show: vlab.show() try: vlab.mlab.close() except AttributeError: pass return 0
def get_mp_info(pp, b, j, e, cache=True, cache_dir=None, slc="x=5.5j:11.0j, y=-4.0j:4.0j, z=-3.6j:3.6j", fit="mp_xloc", fit_p0=(9.0, 0.0, 0.0, 1.0, -1.0, -1.0)): """Get info about m-pause as flattened fields Notes: The first thing this function does is mask locations where the GSE-y current density < 1e-4. This masks out the bow shock and current free regions. This works for southward IMF, but it is not very general. Parameters: pp (ScalarcField): pressure b (VectorField): magnetic field j (VectorField): current density e (VectorField, None): electric field (same centering as b). If None, then the info that requires E will be filled with NaN cache (bool, str): Save to and load from cache, if "force", then don't load from cache if it exists, but do save a cache at the end cache_dir (str): Directory for cache, if None, same directory as that file to which the grid belongs slc (str): slice that gives a box that contains the m-pause fit (str): to which resulting field should the paraboloid be fit, defaults to mp_xloc, but pp_max_xloc might be useful in some circumstances fit_p0 (tuple): Initial guess vector for paraboloid fit Returns: dict: Unless otherwise noted, the entiries are 2D (y-z) fields - **mp_xloc** location of minimum abs(Bz), this works better than max of J^2 for FTEs - **mp_sheath_edge** location where Jy > 0.1 * Jy when coming in from the sheath side - **mp_sphere_edge** location where Jy > 0.1 * Jy when coming in from the sphere side - **mp_width** difference between m-sheath edge and msphere edge - **mp_shear** magnetic shear taken 6 grid points into the m-sheath / m-sphere - **pp_max** max pp - **pp_max_xloc** location of max pp - **epar_max** max e parallel - **epar_max_xloc** location of max e parallel - **paraboloid** numpy.recarray of paraboloid fit. The parameters are given in the 0th element, and the 1st element contains the 1-sigma values for the fit Raises: RuntimeError: if using MHD crds instead of GSE crds """ if not cache_dir: cache_dir = pp.find_info("_viscid_dirname", "./") run_name = pp.find_info("run", None) if cache and run_name: t = pp.time mp_fname = "{0}/{1}.mpause.{2:06.0f}".format(cache_dir, run_name, t) else: mp_fname = "" try: force = cache.strip().lower() == "force" except AttributeError: force = False try: if force or not mp_fname or not os.path.isfile(mp_fname + ".xdmf"): raise IOError() mp_info = {} with viscid.load_file(mp_fname + ".xdmf") as dat: fld_names = ["mp_xloc", "mp_sheath_edge", "mp_sphere_edge", "mp_width", "mp_shear", "pp_max", "pp_max_xloc", "epar_max", "epar_max_xloc"] for fld_name in fld_names: mp_info[fld_name] = dat[fld_name]["x=0"] except (IOError, KeyError): mp_info = {} crd_system = viscid.as_crd_system(b, None) if crd_system != 'gse': raise RuntimeError("get_mp_info can't work in MHD crds, " "switch to GSE please") if j.nr_patches == 1: pp_block = pp[slc] b_block = b[slc] j_block = j[slc] if e is None: e_block = np.nan * viscid.empty_like(j_block) else: e_block = e[slc] else: # interpolate an amr grid so we can proceed obnd = pp.get_slice_extent(slc) dx = np.min(pp.skeleton.L / pp.skeleton.n, axis=0) nx = np.ceil((obnd[1] - obnd[0]) / dx) vol = viscid.seed.Volume(obnd[0], obnd[1], nx, cache=True) pp_block = vol.wrap_field(viscid.interp_trilin(pp, vol), name="P").as_cell_centered() b_block = vol.wrap_field(viscid.interp_trilin(b, vol), name="B").as_cell_centered() j_block = vol.wrap_field(viscid.interp_trilin(j, vol), name="J").as_cell_centered() if e is None: e_block = np.nan * viscid.empty_like(j_block) else: e_block = vol.wrap_field(viscid.interp_trilin(e, vol), name="E").as_cell_centered() # jsq = viscid.dot(j_block, j_block) bsq = viscid.dot(b_block, b_block) # extract ndarrays and mask out bow shock / current free regions maskval = 1e-4 jy_mask = j_block['y'].data < maskval masked_bsq = 1.0 * bsq masked_bsq.data = np.ma.masked_where(jy_mask, bsq) xcc = j_block.get_crd_cc('x') nx = len(xcc) mp_xloc = np.argmin(masked_bsq, axis=0) # indices mp_xloc = mp_xloc.wrap(xcc[mp_xloc.data]) # location pp_max = np.max(pp_block, axis=0) pp_max_xloc = np.argmax(pp_block, axis=0) # indices pp_max_xloc = pp_max_xloc.wrap(xcc[pp_max_xloc.data]) # location epar = viscid.project(e_block, b_block) epar_max = np.max(epar, axis=0) epar_max_xloc = np.argmax(epar, axis=0) # indices epar_max_xloc = pp_max_xloc.wrap(xcc[epar_max_xloc.data]) # location _ret = find_mp_edges(j_block, 0.1, 0.1, maskval=maskval) sheath_edge, msphere_edge, mp_width, sheath_ind, sphere_ind = _ret # extract b and b**2 at sheath + 6 grid points and sphere - 6 grid pointns # clipping cases where things go outside the block. clipped ponints are # set to nan step = 6 # extract b if b_block.layout == "flat": comp_axis = 0 ic, _, iy, iz = np.ix_(*[np.arange(si) for si in b_block.shape]) ix = np.clip(sheath_ind + step, 0, nx - 1) b_sheath = b_block.data[ic, ix, iy, iz] ix = np.clip(sheath_ind - step, 0, nx - 1) b_sphere = b_block.data[ic, ix, iy, iz] elif b_block.layout == "interlaced": comp_axis = 3 _, iy, iz = np.ix_(*[np.arange(si) for si in b_block.shape[:-1]]) ix = np.clip(sheath_ind + step, 0, nx - 1) b_sheath = b_block.data[ix, iy, iz] ix = np.clip(sheath_ind - step, 0, nx - 1) b_sphere = b_block.data[ix, iy, iz] # extract b**2 bmag_sheath = np.sqrt(np.sum(b_sheath**2, axis=comp_axis)) bmag_sphere = np.sqrt(np.sum(b_sphere**2, axis=comp_axis)) costheta = (np.sum(b_sheath * b_sphere, axis=comp_axis) / (bmag_sphere * bmag_sheath)) costheta = np.where((sheath_ind + step < nx) & (sphere_ind - step >= 0), costheta, np.nan) mp_shear = mp_width.wrap((180.0 / np.pi) * np.arccos(costheta)) # don't bother with pretty name since it's not written to file # plane_crds = b_block.crds.slice_keep('x=0', cc=True) # fld_kwargs = dict(center="Cell", time=b.time) mp_width.name = "mp_width" mp_xloc.name = "mp_xloc" sheath_edge.name = "mp_sheath_edge" msphere_edge.name = "mp_sphere_edge" mp_shear.name = "mp_shear" pp_max.name = "pp_max" pp_max_xloc.name = "pp_max_xloc" epar_max.name = "epar_max" epar_max_xloc.name = "epar_max_xloc" mp_info = {} mp_info["mp_width"] = mp_width mp_info["mp_xloc"] = mp_xloc mp_info["mp_sheath_edge"] = sheath_edge mp_info["mp_sphere_edge"] = msphere_edge mp_info["mp_shear"] = mp_shear mp_info["pp_max"] = pp_max mp_info["pp_max_xloc"] = pp_max_xloc mp_info["epar_max"] = epar_max mp_info["epar_max_xloc"] = epar_max_xloc # cache new fields to disk if mp_fname: viscid.save_fields(mp_fname + ".h5", list(mp_info.values())) try: _paraboloid_params = fit_paraboloid(mp_info[fit], p0=fit_p0) mp_info["paraboloid"] = _paraboloid_params except ImportError as _exception: try: msg = _exception.message except AttributeError: msg = _exception.msg mp_info["paraboloid"] = viscid.DeferredImportError(msg) mp_info["mp_width"].pretty_name = "Magnetopause Width" mp_info["mp_xloc"].pretty_name = "Magnetopause $X_{gse}$ Location" mp_info["mp_sheath_edge"].pretty_name = "Magnetosheath Edge" mp_info["mp_sphere_edge"].pretty_name = "Magnetosphere Edge" mp_info["mp_shear"].pretty_name = "Magnetic Shear" mp_info["pp_max"].pretty_name = "Max Pressure" mp_info["pp_max_xloc"].pretty_name = "Max Pressure Location" mp_info["epar_max"].pretty_name = "Max E Parallel" mp_info["epar_max_xloc"].pretty_name = "Max E Parallel Location" return mp_info
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") args = vutil.common_argparse(parser) b, e = make_arcade(8.0, N=[64, 64, 64]) epar = viscid.project(e, b) epar.pretty_name = "E parallel" ############### # Calculate Xi seeds = viscid.Volume(xl=[-10, 0.0, -10], xh=[10, 0.0, 10], n=[64, 1, 64]) b_lines, _ = viscid.calc_streamlines(b, seeds) xi_dat = viscid.integrate_along_lines(b_lines, e, reduction='dot') xi = seeds.wrap_field(xi_dat, name='xi', pretty_name=r"$\Xi$") ################################ # Make 2D Matplotlib plot of Xi vlt.plot(xi, x=(-10, 10), y=(-10, 10), style='contourf', levels=256, lin=(2e-4, 1.5718)) vlt.plot(xi, x=(-10, 10), y=(-10, 10), style='contour', colors='grey', levels=[0.5, 1.0]) vlt.savefig(next_plot_fname(__file__)) if args.show: vlt.show() ############################################################ # Make 3D mayavi plot of Xi and the 'brightest' field lines # as well as some other field lines for context try: from viscid.plot import vlab except ImportError: xfail("Mayavi not installed") vlab.figure(size=[1200, 800], offscreen=not args.show) inds = np.argsort(xi_dat)[-64:] inds = np.concatenate([inds, np.arange(len(xi_dat))[::71]]) s = vlab.plot_lines(b_lines[inds], scalars=epar, cmap='viridis') vlab.mesh_from_seeds(seeds, scalars=xi, cmap='inferno') vlab.colorbar(s, orientation='horizontal', title=epar.pretty_name) # vlab.streamline(b, scalars=e, seedtype='sphere', seed_resolution=4, # integration_direction='both') oa = vlab.orientation_axes() oa.marker.set_viewport(0.75, 0.75, 1.0, 1.0) vlab.view(roll=0, azimuth=90, elevation=25, distance=30.0, focalpoint=[0, 2, 0]) vlab.savefig(next_plot_fname(__file__)) if args.show: vlab.show() try: vlab.mlab.close() except AttributeError: pass return 0
def get_mp_info(pp, b, j, e, cache=True, cache_dir=None, slc="x=5.5f:11.0f, y=-4.0f:4.0f, z=-3.6f:3.6f", fit="mp_xloc", fit_p0=(9.0, 0.0, 0.0, 1.0, -1.0, -1.0)): """Get info about m-pause as flattened fields Notes: The first thing this function does is mask locations where the GSE-y current density < 1e-4. This masks out the bow shock and current free regions. This works for southward IMF, but it is not very general. Parameters: pp (ScalarcField): pressure b (VectorField): magnetic field j (VectorField): current density e (VectorField, None): electric field (same centering as b). If None, then the info that requires E will be filled with NaN cache (bool, str): Save to and load from cache, if "force", then don't load from cache if it exists, but do save a cache at the end cache_dir (str): Directory for cache, if None, same directory as that file to which the grid belongs slc (str): slice that gives a box that contains the m-pause fit (str): to which resulting field should the paraboloid be fit, defaults to mp_xloc, but pp_max_xloc might be useful in some circumstances fit_p0 (tuple): Initial guess vector for paraboloid fit Returns: dict: Unless otherwise noted, the entiries are 2D (y-z) fields - **mp_xloc** location of minimum abs(Bz), this works better than max of J^2 for FTEs - **mp_sheath_edge** location where Jy > 0.1 * Jy when coming in from the sheath side - **mp_sphere_edge** location where Jy > 0.1 * Jy when coming in from the sphere side - **mp_width** difference between m-sheath edge and msphere edge - **mp_shear** magnetic shear taken 6 grid points into the m-sheath / m-sphere - **pp_max** max pp - **pp_max_xloc** location of max pp - **epar_max** max e parallel - **epar_max_xloc** location of max e parallel - **paraboloid** numpy.recarray of paraboloid fit. The parameters are given in the 0th element, and the 1st element contains the 1-sigma values for the fit Raises: RuntimeError: if using MHD crds instead of GSE crds """ if not cache_dir: cache_dir = pp.find_info("_viscid_dirname", "./") run_name = pp.find_info("run", None) if cache and run_name: t = pp.time mp_fname = "{0}/{1}.mpause.{2:06.0f}".format(cache_dir, run_name, t) else: mp_fname = "" try: force = cache.strip().lower() == "force" except AttributeError: force = False try: if force or not mp_fname or not os.path.isfile(mp_fname + ".xdmf"): raise IOError() mp_info = {} with viscid.load_file(mp_fname + ".xdmf") as dat: fld_names = [ "mp_xloc", "mp_sheath_edge", "mp_sphere_edge", "mp_width", "mp_shear", "pp_max", "pp_max_xloc", "epar_max", "epar_max_xloc" ] for fld_name in fld_names: mp_info[fld_name] = dat[fld_name]["x=0"] except (IOError, KeyError): mp_info = {} crd_system = viscid.as_crd_system(b, None) if crd_system != 'gse': raise RuntimeError("get_mp_info can't work in MHD crds, " "switch to GSE please") if j.nr_patches == 1: pp_block = pp[slc] b_block = b[slc] j_block = j[slc] if e is None: e_block = np.nan * viscid.empty_like(j_block) else: e_block = e[slc] else: # interpolate an amr grid so we can proceed obnd = pp.get_slice_extent(slc) dx = np.min(pp.skeleton.L / pp.skeleton.n, axis=0) nx = np.ceil((obnd[1] - obnd[0]) / dx) vol = viscid.seed.Volume(obnd[0], obnd[1], nx, cache=True) pp_block = vol.wrap_field(viscid.interp_trilin(pp, vol), name="P").as_cell_centered() b_block = vol.wrap_field(viscid.interp_trilin(b, vol), name="B").as_cell_centered() j_block = vol.wrap_field(viscid.interp_trilin(j, vol), name="J").as_cell_centered() if e is None: e_block = np.nan * viscid.empty_like(j_block) else: e_block = vol.wrap_field(viscid.interp_trilin(e, vol), name="E").as_cell_centered() # jsq = viscid.dot(j_block, j_block) bsq = viscid.dot(b_block, b_block) # extract ndarrays and mask out bow shock / current free regions maskval = 1e-4 jy_mask = j_block['y'].data < maskval masked_bsq = 1.0 * bsq masked_bsq.data = np.ma.masked_where(jy_mask, bsq) xcc = j_block.get_crd_cc('x') nx = len(xcc) mp_xloc = np.argmin(masked_bsq, axis=0) # indices mp_xloc = mp_xloc.wrap(xcc[mp_xloc.data]) # location pp_max = np.max(pp_block, axis=0) pp_max_xloc = np.argmax(pp_block, axis=0) # indices pp_max_xloc = pp_max_xloc.wrap(xcc[pp_max_xloc.data]) # location epar = viscid.project(e_block, b_block) epar_max = np.max(epar, axis=0) epar_max_xloc = np.argmax(epar, axis=0) # indices epar_max_xloc = pp_max_xloc.wrap(xcc[epar_max_xloc.data]) # location _ret = find_mp_edges(j_block, 0.1, 0.1, maskval=maskval) sheath_edge, msphere_edge, mp_width, sheath_ind, sphere_ind = _ret # extract b and b**2 at sheath + 6 grid points and sphere - 6 grid pointns # clipping cases where things go outside the block. clipped ponints are # set to nan step = 6 # extract b if b_block.layout == "flat": comp_axis = 0 ic, _, iy, iz = np.ix_(*[np.arange(si) for si in b_block.shape]) ix = np.clip(sheath_ind + step, 0, nx - 1) b_sheath = b_block.data[ic, ix, iy, iz] ix = np.clip(sheath_ind - step, 0, nx - 1) b_sphere = b_block.data[ic, ix, iy, iz] elif b_block.layout == "interlaced": comp_axis = 3 _, iy, iz = np.ix_(*[np.arange(si) for si in b_block.shape[:-1]]) ix = np.clip(sheath_ind + step, 0, nx - 1) b_sheath = b_block.data[ix, iy, iz] ix = np.clip(sheath_ind - step, 0, nx - 1) b_sphere = b_block.data[ix, iy, iz] # extract b**2 bmag_sheath = np.sqrt(np.sum(b_sheath**2, axis=comp_axis)) bmag_sphere = np.sqrt(np.sum(b_sphere**2, axis=comp_axis)) costheta = (np.sum(b_sheath * b_sphere, axis=comp_axis) / (bmag_sphere * bmag_sheath)) costheta = np.where( (sheath_ind + step < nx) & (sphere_ind - step >= 0), costheta, np.nan) mp_shear = mp_width.wrap((180.0 / np.pi) * np.arccos(costheta)) # don't bother with pretty name since it's not written to file # plane_crds = b_block.crds.slice_keep('x=0', cc=True) # fld_kwargs = dict(center="Cell", time=b.time) mp_width.name = "mp_width" mp_xloc.name = "mp_xloc" sheath_edge.name = "mp_sheath_edge" msphere_edge.name = "mp_sphere_edge" mp_shear.name = "mp_shear" pp_max.name = "pp_max" pp_max_xloc.name = "pp_max_xloc" epar_max.name = "epar_max" epar_max_xloc.name = "epar_max_xloc" mp_info = {} mp_info["mp_width"] = mp_width mp_info["mp_xloc"] = mp_xloc mp_info["mp_sheath_edge"] = sheath_edge mp_info["mp_sphere_edge"] = msphere_edge mp_info["mp_shear"] = mp_shear mp_info["pp_max"] = pp_max mp_info["pp_max_xloc"] = pp_max_xloc mp_info["epar_max"] = epar_max mp_info["epar_max_xloc"] = epar_max_xloc # cache new fields to disk if mp_fname: viscid.save_fields(mp_fname + ".h5", mp_info.values()) try: _paraboloid_params = fit_paraboloid(mp_info[fit], p0=fit_p0) mp_info["paraboloid"] = _paraboloid_params except ImportError as _exception: try: msg = _exception.message except AttributeError: msg = _exception.msg mp_info["paraboloid"] = viscid.DeferredImportError(msg) mp_info["mp_width"].pretty_name = "Magnetopause Width" mp_info["mp_xloc"].pretty_name = "Magnetopause $X_{gse}$ Location" mp_info["mp_sheath_edge"].pretty_name = "Magnetosheath Edge" mp_info["mp_sphere_edge"].pretty_name = "Magnetosphere Edge" mp_info["mp_shear"].pretty_name = "Magnetic Shear" mp_info["pp_max"].pretty_name = "Max Pressure" mp_info["pp_max_xloc"].pretty_name = "Max Pressure Location" mp_info["epar_max"].pretty_name = "Max E Parallel" mp_info["epar_max_xloc"].pretty_name = "Max E Parallel Location" return mp_info
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") parser.add_argument("--interact", "-i", action="store_true") args = vutil.common_argparse(parser) f3d = viscid.load_file(os.path.join(sample_dir, 'sample_xdmf.3d.[0].xdmf')) f_iono = viscid.load_file( os.path.join(sample_dir, "sample_xdmf.iof.[0].xdmf")) b = f3d["b"] v = f3d["v"] pp = f3d["pp"] e = f3d["e_cc"] vlab.mlab.options.offscreen = not args.show vlab.figure(size=(1280, 800)) ########################################################## # make b a dipole inside 3.1Re and set e = 0 inside 4.0Re cotr = viscid.Cotr(time='1990-03-21T14:48', dip_tilt=0.0) # pylint: disable=not-callable moment = cotr.get_dipole_moment(crd_system=b) isphere_mask = viscid.make_spherical_mask(b, rmax=3.1) viscid.fill_dipole(b, m=moment, mask=isphere_mask) e_mask = viscid.make_spherical_mask(b, rmax=4.0) viscid.set_in_region(e, 0.0, alpha=0.0, mask=e_mask, out=e) ###################################### # plot a scalar cut plane of pressure pp_src = vlab.field2source(pp, center='node') scp = vlab.scalar_cut_plane(pp_src, plane_orientation='z_axes', opacity=0.5, transparent=True, view_controls=False, cmap="inferno", logscale=True) scp.implicit_plane.normal = [0, 0, -1] scp.implicit_plane.origin = [0, 0, 0] scp.enable_contours = True scp.contour.filled_contours = True scp.contour.number_of_contours = 64 cbar = vlab.colorbar(scp, title=pp.name, orientation='vertical') cbar.scalar_bar_representation.position = (0.01, 0.13) cbar.scalar_bar_representation.position2 = (0.08, 0.76) ###################################### # plot a vector cut plane of the flow vcp = vlab.vector_cut_plane(v, scalars=pp_src, plane_orientation='z_axes', view_controls=False, mode='arrow', cmap='Greens_r') vcp.implicit_plane.normal = [0, 0, -1] vcp.implicit_plane.origin = [0, 0, 0] ############################## # plot very faint isosurfaces vx_src = vlab.field2source(v['x'], center='node') iso = vlab.iso_surface(vx_src, contours=[0.0], opacity=0.008, cmap='Pastel1') ############################################################## # calculate B field lines && topology in Viscid and plot them seedsA = viscid.SphericalPatch([0, 0, 0], [2, 0, 1], 30, 15, r=5.0, nalpha=5, nbeta=5) seedsB = viscid.SphericalPatch([0, 0, 0], [1.9, 0, -20], 30, 15, r=5.0, nalpha=1, nbeta=5) seeds = np.concatenate([seedsA, seedsB], axis=1) b_lines, topo = viscid.calc_streamlines(b, seeds, ibound=3.5, obound0=[-25, -20, -20], obound1=[15, 20, 20], wrap=True) vlab.plot_lines(b_lines, scalars=viscid.topology2color(topo)) ###################################################################### # plot a random circle at geosynchronus orbit with scalars colored # by the Matplotlib viridis color map, just because we can; this is # a useful toy for debugging circle = viscid.Circle(p0=[0, 0, 0], r=6.618, n=128, endpoint=True) scalar = np.sin(circle.as_local_coordinates().get_crd('phi')) surf = vlab.plot_line(circle.get_points(), scalars=scalar, clim=0.8, cmap="Spectral_r") ###################################################################### # Use Mayavi (VTK) to calculate field lines using an interactive seed # These field lines are colored by E parallel epar = viscid.project(e, b) epar.name = "Epar" bsl2 = vlab.streamline(b, epar, seedtype='plane', seed_resolution=4, integration_direction='both', clim=(-0.05, 0.05)) # now tweak the VTK streamlines bsl2.stream_tracer.maximum_propagation = 20. bsl2.seed.widget.origin = [-11, -5.0, -2.0] bsl2.seed.widget.point1 = [-11, 5.0, -2.0] bsl2.seed.widget.point2 = [-11.0, -5.0, 2.0] bsl2.streamline_type = 'tube' bsl2.tube_filter.radius = 0.03 bsl2.stop() # this stop/start was a hack to get something to update bsl2.start() bsl2.seed.widget.enabled = False cbar = vlab.colorbar(bsl2, title=epar.name, label_fmt='%.3f', orientation='horizontal') cbar.scalar_bar_representation.position = (0.15, 0.01) cbar.scalar_bar_representation.position2 = (0.72, 0.10) ############################################################### # Make a contour at the open-closed boundary in the ionosphere seeds_iono = viscid.Sphere(r=1.063, pole=-moment, ntheta=256, nphi=256, thetalim=(0, 180), philim=(0, 360), crd_system=b) _, topo_iono = viscid.calc_streamlines(b, seeds_iono, ibound=1.0, nr_procs='all', output=viscid.OUTPUT_TOPOLOGY) topo_iono = np.log2(topo_iono) m = vlab.mesh_from_seeds(seeds_iono, scalars=topo_iono, opacity=1.0, clim=(0, 3), color=(0.992, 0.445, 0.0)) m.enable_contours = True m.actor.property.line_width = 4.0 m.contour.number_of_contours = 4 #################################################################### # Plot the ionosphere, note that the sample data has the ionosphere # at a different time, so the open-closed boundary found above # will not be consistant with the field aligned currents fac_tot = 1e9 * f_iono['fac_tot'] m = vlab.plot_ionosphere(fac_tot, bounding_lat=30.0, vmin=-300, vmax=300, opacity=0.75, rotate=cotr, crd_system=b) m.actor.property.backface_culling = True ######################################################################## # Add some markers for earth, i.e., real earth, and dayside / nightside # representation vlab.plot_blue_marble(r=1.0, lines=False, ntheta=64, nphi=128, rotate=cotr, crd_system=b) # now shade the night side with a transparent black hemisphere vlab.plot_earth_3d(radius=1.01, night_only=True, opacity=0.5, crd_system=b) #################### # Finishing Touches # vlab.axes(pp_src, nb_labels=5) oa = vlab.orientation_axes() oa.marker.set_viewport(0.75, 0.75, 1.0, 1.0) # note that resize won't work if the current figure has the # off_screen_rendering flag set # vlab.resize([1200, 800]) vlab.view(azimuth=45, elevation=70, distance=35.0, focalpoint=[-2, 0, 0]) ############## # Save Figure # print("saving png") # vlab.savefig('mayavi_msphere_sample.png') # print("saving x3d") # # x3d files can be turned into COLLADA files with meshlab, and # # COLLADA (.dae) files can be opened in OS X's preview # # # # IMPORTANT: for some reason, using bounding_lat in vlab.plot_ionosphere # # causes a segfault when saving x3d files # # # vlab.savefig('mayavi_msphere_sample.x3d') # print("done") vlab.savefig(next_plot_fname(__file__)) ########################### # Interact Programatically if args.interact: vlab.interact() ####################### # Interact Graphically if args.show: vlab.show() try: vlab.mlab.close() except AttributeError: pass return 0