def test1(objectPoints_square):
    # ------------------------------Z fixed, study X Y-----------------------------------------
    cams_Zfixed = []
    for x in np.linspace(-0.5, 0.5, 10):
        for y in np.linspace(-0.5, 0.5, 10):
            cam1 = Camera()
            cam1.set_K(fx=800, fy=800, cx=640 / 2., cy=480 / 2.)
            cam1.set_width_heigth(640, 480)

            ## DEFINE A SET OF CAMERA POSES IN DIFFERENT POSITIONS BUT ALWAYS LOOKING
            # TO THE CENTER OF THE PLANE MODEL
            # TODO LOOK AT
            cam1.set_R_axisAngle(1.0, 0.0, 0.0, np.deg2rad(180.0))
            # TODO  cv2.SOLVEPNP_DLS, cv2.SOLVEPNP_EPNP, cv2.SOLVEPNP_ITERATIVE
            # cam1.set_t(x, -0.01, 1.31660688, frame='world')
            cam1.set_t(x, y, 1.3, frame='world')
            # 0.28075725, -0.23558331, 1.31660688
            cams_Zfixed.append(cam1)

    new_objectPoints = np.copy(objectPoints_square)
    xInputs = []
    yInputs = []
    volumes = []
    for cam in cams_Zfixed:
        t = cam.get_world_position()
        xInputs.append(t[0])
        yInputs.append(t[1])

        cov_mat = covariance_alpha_belt_r(cam, new_objectPoints)
        a, b, c = ellipsoid.get_semi_axes_abc(cov_mat, 0.95)
        v = ellipsoid.ellipsoid_Volume(a, b, c)
        volumes.append(v)

    dvm.displayCovVolume_Zfixed3D(xInputs, yInputs, volumes)
예제 #2
0
def test2_covariance_alpha_belt_r():
    """
    Test covariance_alpha_belt_r(cam, new_objectPoints)
    X Y fixed, Z changed
    :return:
    """
    pl = CircularPlane(origin=np.array([0., 0., 0.]),
                       normal=np.array([0, 0, 1]),
                       radius=0.15,
                       n=4)
    x1 = round(pl.radius * np.cos(np.deg2rad(45)), 3)
    y1 = round(pl.radius * np.sin(np.deg2rad(45)), 3)
    objectPoints_square = np.array([[x1, -x1, -x1, x1], [y1, y1, -y1, -y1],
                                    [0., 0., 0., 0.], [1., 1., 1., 1.]])

    new_objectPoints = np.copy(objectPoints_square)

    # -----------------------------X Y fixed, Z changed-----------------------------
    cams_XYfixed = []
    for i in np.linspace(0.5, 2, 5):
        cam1 = Camera()
        cam1.set_K(fx=800, fy=800, cx=640 / 2., cy=480 / 2.)
        cam1.set_width_heigth(640, 480)
        cam1.set_R_axisAngle(1.0, 0.0, 0.0, np.deg2rad(180.0))
        cam1.set_t(0, 0, i, frame='world')
        # 0.28075725, -0.23558331, 1.31660688
        cams_XYfixed.append(cam1)

    zInputs = []
    volumes = []
    ellipsoid_paras = np.array([[0], [0], [0], [0], [0], [0]])  # a,b,c,x,y,z
    for cam in cams_XYfixed:
        cam_tem = cam.clone()
        valid = cms.validCam(cam_tem, new_objectPoints)
        if valid:
            t = cam.get_world_position()
            zInputs.append(t[2])
            print "Height", t[2]

            cov_mat = cms.covariance_alpha_belt_r(cam, new_objectPoints)
            a, b, c = ellipsoid.get_semi_axes_abc(cov_mat, 0.95)
            display_array = np.array(
                [[0.0], [0.0], [0.0], [0.0], [0.0], [0.0]], dtype=float)
            display_array[0:3, 0] = a, b, c
            display_array[3:6, 0] = np.copy(t[0:3])
            ellipsoid_paras = np.hstack((ellipsoid_paras, display_array))

            v = ellipsoid.ellipsoid_Volume(a, b, c)
            print "volumn", v
            volumes.append(v)

    dvm.displayCovVolume_XYfixed3D(zInputs, volumes)
def Z_fixed_study_square():
    cams_HeightFixed = []
    cam_1 = Camera()
    cam_1.set_K(fx=800, fy=800, cx=640 / 2., cy=480 / 2.)
    cam_1.set_width_heigth(640, 480)
    cam_1.set_R_axisAngle(1.0, 0.0, 0.0, np.deg2rad(180.0))
    cam_1.set_t(0.1, 0.1, 1, frame='world')
    cams_HeightFixed.append(cam_1)

    cam_2 = Camera()
    cam_2.set_K(fx=800, fy=800, cx=640 / 2., cy=480 / 2.)
    cam_2.set_width_heigth(640, 480)
    cam_2.set_R_axisAngle(1.0, 0.0, 0.0, np.deg2rad(180.0))
    cam_2.set_t(-0.1, 0.1, 1, frame='world')
    # 0.28075725, -0.23558331, 1.31660688
    cams_HeightFixed.append(cam_2)

    cam_3 = Camera()
    cam_3.set_K(fx=800, fy=800, cx=640 / 2., cy=480 / 2.)
    cam_3.set_width_heigth(640, 480)
    cam_3.set_R_axisAngle(1.0, 0.0, 0.0, np.deg2rad(180.0))
    cam_3.set_t(-0.1, -0.1, 1, frame='world')
    # 0.28075725, -0.23558331, 1.31660688
    cams_HeightFixed.append(cam_3)

    cam_4 = Camera()
    cam_4.set_K(fx=800, fy=800, cx=640 / 2., cy=480 / 2.)
    cam_4.set_width_heigth(640, 480)
    cam_4.set_R_axisAngle(1.0, 0.0, 0.0, np.deg2rad(180.0))
    cam_4.set_t(0.1, -0.1, 1, frame='world')
    # 0.28075725, -0.23558331, 1.31660688
    cams_HeightFixed.append(cam_4)
    inputX, inputY, inputZ, input_ippe1_t, input_ippe1_R, input_ippe2_t, input_ippe2_R, input_pnp_t, input_pnp_R, input_transfer_error, display_mat = bf.heightGetCondNum(cams_HeightFixed)
예제 #4
0
elif number_of_points == 5:
    import gdescent.hpoints_gradient5 as gd
elif number_of_points == 6:
    import gdescent.hpoints_gradient6 as gd

## Define a Display plane with random initial points
pl = CircularPlane()
pl.random(n=number_of_points, r=0.01, min_sep=0.01)

## CREATE A SIMULATED CAMERA
cam = Camera()
cam.set_K(fx=800, fy=800, cx=640 / 2., cy=480 / 2.)
cam.set_width_heigth(640, 480)

## DEFINE CAMERA POSE LOOKING STRAIGTH DOWN INTO THE PLANE MODEL
cam.set_R_axisAngle(1.0, 0.0, 0.0, np.deg2rad(180.0))
cam.set_t(0.0, -0.0, 0.5, frame='world')

#cam.set_R_axisAngle(1.0,  0.0,  0.0, np.deg2rad(140.0))
#cam.set_t(0.0,-1,1.0, frame='world')
#
r = 0.8
angle = 30
x = r * np.cos(np.deg2rad(angle))
z = r * np.sin(np.deg2rad(angle))
cam.set_t(0, x, z)
cam.set_R_mat(R_matrix_from_euler_t(0.0, 0, 0))
cam.look_at([0, 0, 0])

#cam.set_R_axisAngle(1.0,  0.0,  0.0, np.deg2rad(110.0))
#cam.set_t(0.0,-0.3,0.1, frame='world')
예제 #5
0
class OptimalPointsSim(object):
    """ Class that defines and optimization to obtain optimal control points
  configurations for homography and plannar pose estimation. """
    def __init__(self):
        """ Definition of a simulated camera """
        self.cam = Camera()
        self.cam.set_K(fx=100, fy=100, cx=640, cy=480)
        self.cam.set_width_heigth(1280, 960)
        """ Initial camera pose looking stratight down into the plane model """
        self.cam.set_R_axisAngle(1.0, 0.0, 0.0, np.deg2rad(180))
        self.cam.set_t(0.0, 0.0, 1.5, frame='world')
        """ Plane for the control points """
        self.sph = Sphere(radius=0.5)
        self.sph.random_points(p=6, r=0.5, min_dist=0.001)

    def run(self):
        self.objectPoints = self.sph.get_sphere_points()
        self.init_params = flatten_points(self.objectPoints, type='object')

        self.objective1 = lambda params: matrix_condition_number_autograd(
            params, self.cam.P, normalize=False)
        self.objective2 = lambda params, iter: matrix_condition_number_autograd(
            params, self.cam.P, normalize=True)

        print("Optimizing condition number...")
        objective_grad = grad(self.objective2)
        self.optimized_params = adam(objective_grad,
                                     self.init_params,
                                     step_size=0.001,
                                     num_iters=200,
                                     callback=self.plot_points)

    def plot_points(self, params, iter, gradient):
        phisim = np.linspace((-math.pi) / 2., (math.pi / 2.))
        thetasim = np.linspace(0, 2 * np.pi)
        print params
        pointscoord = np.full((3, 6), 0.0)

        for i in range(6):

            pointscoord[0, i] = params[i]
            pointscoord[1, i] = params[i + 1]
            pointscoord[2, i] = params[i + 2]

        x = np.outer(np.sin(thetasim), np.cos(phisim))
        y = np.outer(np.sin(thetasim), np.sin(phisim))
        z = np.outer(np.cos(thetasim), np.ones_like(phisim))
        fig, ax = plt.subplots(subplot_kw={'projection': '3d'})
        ax.plot_wireframe(sph.radius * x,
                          sph.radius * y,
                          sph.radius * z,
                          color='g')
        ax.scatter(pointscoord[:3, 0],
                   pointscoord[:3, 1],
                   pointscoord[:3, 2],
                   c='r')
        ax.scatter(pointscoord[:3, 3],
                   pointscoord[:3, 4],
                   pointscoord[:3, 5],
                   c='r')
        plt.show()
예제 #6
0
#%%
# load points
points = np.loadtxt('house.p3d').T
points = np.vstack((points, np.ones(points.shape[1])))

#%%
# setup camera
#P = hstack((eye(3),array([[0],[0],[-10]])))
cam = Camera()
## Test matrix functions
cam.set_K(1460, 1460, 608, 480)
cam.set_width_heigth(1280, 960)  #TODO Yue
# cam.set_R(0.0,  0.0,  1.0, 0.0)
cam.set_t(0.0, 0.0, -8.0)
cam.set_R_axisAngle(1.0, 0.0, 0.0, np.deg2rad(140.0))  #TODO Yue
cam.set_P()
print(cam.factor())

#%%

x = np.array(cam.project(points))

#%%
# plot projection
plt.figure()
plt.plot(x[0], x[1], 'k.')
plt.xlim(0, 1280)
plt.ylim(0, 960)
plt.show()
예제 #7
0
from vision.rt_matrix import *
import numpy as np
from matplotlib import pyplot as plt

#%%
# load points
points = np.loadtxt('house.p3d').T
points = np.vstack((points, np.ones(points.shape[1])))

#%%
# setup camera
#P = hstack((eye(3),array([[0],[0],[-10]])))
cam = Camera()
## Test matrix functions
cam.set_K(1460, 1460, 608, 480)
cam.set_R_axisAngle(0.0, 0.0, 1.0, 0.0)
cam.set_t(0.0, 0.0, -8.0)
cam.set_P()
print(cam.factor())

#%%

x = np.array(cam.project(points))

#%%
# plot projection
plt.figure()
plt.plot(x[0], x[1], 'k.')
plt.xlim(0, 1280)
plt.ylim(0, 960)
plt.show()