def __init__(self, model_path): net_type = 'mb1-ssd' label_path = os.path.join(os.path.dirname(model_path), 'voc-model-labels.txt') self.class_names = [name.strip() for name in open(label_path).readlines()] class_length = len(self.class_names) if net_type == 'vgg16-ssd': net = create_vgg_ssd(class_length, is_test=True) elif net_type == 'mb1-ssd': net = create_mobilenetv1_ssd(class_length, is_test=True) elif net_type == 'mb1-ssd-lite': net = create_mobilenetv1_ssd_lite(class_length, is_test=True) else: print("The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite.") sys.exit(1) if net_type == 'vgg16-ssd': predictor = create_vgg_ssd_predictor(net, candidate_size=200) elif net_type == 'mb1-ssd': predictor = create_mobilenetv1_ssd_predictor(net, candidate_size=200) elif net_type == 'mb1-ssd-lite': predictor = create_mobilenetv1_ssd_lite_predictor(net, candidate_size=200) else: print("The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite.") sys.exit(1) net.load(model_path) self.predictor = predictor
def net_initilize(self, net_type, model_path, class_names): if net_type == 'vgg16-ssd': net = create_vgg_ssd(len(class_names), is_test=True) elif net_type == 'mb1-ssd': net = create_mobilenetv1_ssd(len(class_names), is_test=True) elif net_type == 'mb1-ssd-lite': net = create_mobilenetv1_ssd_lite(len(class_names), is_test=True) else: print( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) sys.exit(1) if net_type == 'vgg16-ssd': predictor = create_vgg_ssd_predictor(net, candidate_size=200) elif net_type == 'mb1-ssd': predictor = create_mobilenetv1_ssd_predictor(net, candidate_size=200) elif net_type == 'mb1-ssd-lite': predictor = create_mobilenetv1_ssd_lite_predictor( net, candidate_size=200) else: print( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) sys.exit(1) self.net = net self.net.load(model_path) self.pdc = predictor
def __init__(self): model_path = './models/mb1-ssd-Epoch-1290-Loss-2.35230020682017.pth' label_path = './models/voc-model-labels.txt' self.class_names = [name.strip() for name in open(label_path).readlines()] net = create_mobilenetv1_ssd(len(self.class_names), is_test=True) net.load(model_path) self.predictor = create_mobilenetv1_ssd_predictor(net, candidate_size=200) self.alert_sum = 0
def __init__(self): model = "v1" self.prob_threshold = 0.85 self.cv_bridge = CvBridge() self.labels = ['background' , # always index 0 'person','palm'] self.objects = [] if model == "v2_lite": self.network = create_mobilenetv2_ssd_lite(len(self.labels), is_test=True) elif model == "v1": self.network = create_mobilenetv1_ssd(len(self.labels), is_test=True) elif model == "v1_lite": self.network = create_mobilenetv1_ssd_lite(len(self.labels), is_test=True) model_path = '/home/arg_ws3/pytorch-ssd/models/argbot_person_palm_new_new/mb1-ssd-Epoch-749-Loss-1.8576.pth' state_dict = torch.load(os.path.join(model_path)) self.network.load_state_dict(state_dict) DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.network.to(DEVICE) if model == "v2_lite": self.predictor = create_mobilenetv2_ssd_lite_predictor(self.network, candidate_size=200, device = DEVICE) elif model == "v1_lite": self.predictor = create_mobilenetv1_ssd_lite_predictor(self.network, candidate_size=200, device = DEVICE) elif model == "v1": self.predictor = create_mobilenetv1_ssd_predictor(self.network, candidate_size=200, device = DEVICE) #### Publisher self.origin = rospy.Publisher('/input', bb_input, queue_size=1) self.image_pub = rospy.Publisher("/predict_img", Image, queue_size = 1) self.pub_tracking = rospy.Publisher("/tracking_point", Marker, queue_size = 1) self.pub_point_array = rospy.Publisher("/person_point_array", MarkerArray, queue_size = 1) self.kf_x = KalmanFilter(dim_x=2, dim_z=1) self.kf_y = KalmanFilter(dim_x=2, dim_z=1) self.path = [] self.person_list = [] self.cv_depthimage = None self.start_tracking = False self.frame_id = 'camera_link' self.t_old = None self.t_now = None info_msg = rospy.wait_for_message('/camera/color/camera_info', CameraInfo, timeout=None) self.fx = info_msg.P[0] self.fy = info_msg.P[5] self.cx = info_msg.P[2] self.cy = info_msg.P[6] ### msg filter self.is_compressed = False image_sub = message_filters.Subscriber('/camera/color/image_raw', Image) depth_sub = message_filters.Subscriber('/camera/aligned_depth_to_color/image_raw', Image) ts = message_filters.TimeSynchronizer([image_sub, depth_sub], 10) ts.registerCallback(self.callback)
def __init__(self): model = "v1" self.prob_threshold = 0.85 self.cv_bridge = CvBridge() self.num_points = 8000 self.labels = [ 'background', # always index 0 'person', 'palm' ] self.objects = [] if model == "v2_lite": self.network = create_mobilenetv2_ssd_lite(len(self.labels), is_test=True) elif model == "v1": self.network = create_mobilenetv1_ssd(len(self.labels), is_test=True) elif model == "v1_lite": self.network = create_mobilenetv1_ssd_lite(len(self.labels), is_test=True) model_path = '/home/arg_ws3/pytorch-ssd/models/argbot_person_palm/mb1-ssd-Epoch-10-Loss-3.1767.pth' state_dict = torch.load(os.path.join(model_path)) self.network.load_state_dict(state_dict) DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.network.to(DEVICE) if model == "v2_lite": self.predictor = create_mobilenetv2_ssd_lite_predictor( self.network, candidate_size=200, device=DEVICE) elif model == "v1_lite": self.predictor = create_mobilenetv1_ssd_lite_predictor( self.network, candidate_size=200, device=DEVICE) elif model == "v1": self.predictor = create_mobilenetv1_ssd_predictor( self.network, candidate_size=200, device=DEVICE) #### Publisher self.origin = rospy.Publisher('/input', bb_input, queue_size=1) self.image_pub = rospy.Publisher("/predict_img", Image, queue_size=1) self.mask_pub = rospy.Publisher("/predict_mask", Image, queue_size=1) ### msg filter self.is_compressed = False video_mode = False if video_mode: image_sub = rospy.Subscriber('/camera/color/image_raw', Image, self.video_callback) else: image_sub = message_filters.Subscriber('/camera/color/image_raw', Image) depth_sub = message_filters.Subscriber( '/camera/aligned_depth_to_color/image_raw', Image) ts = message_filters.TimeSynchronizer([image_sub, depth_sub], 10) ts.registerCallback(self.callback)
def __init__(self): model = "v1" self.prob_threshold = 0.65 r = rospkg.RosPack() self.path = r.get_path('ssd_mobile_lite') self.cv_bridge = CvBridge() self.num_points = 8000 self.labels = [ 'background', # always index 0 'duckie_car', 'house', 'broken', 'duck' ] self.objects = [] if model == "v2_lite": self.network = create_mobilenetv2_ssd_lite(len(self.labels), is_test=True) model_dir = "/home/nvidia" model_name = "model1.pth" elif model == "v1": self.network = create_mobilenetv1_ssd(len(self.labels), is_test=True) model_name = "/models/model.pth" elif model == "v1_lite": self.network = create_mobilenetv1_ssd_lite(len(self.labels), is_test=True) model_name = "/models/model.pth" state_dict = torch.load(self.path + model_name) self.network.load_state_dict(state_dict) DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.network.to(DEVICE) if model == "v2_lite": self.predictor = create_mobilenetv2_ssd_lite_predictor( self.network, candidate_size=200, device=DEVICE) elif model == "v1_lite": self.predictor = create_mobilenetv1_ssd_lite_predictor( self.network, candidate_size=200, device=DEVICE) elif model == "v1": self.predictor = create_mobilenetv1_ssd_predictor( self.network, candidate_size=200, device=DEVICE) print("finish load model") #### Publisher self.image_pub = rospy.Publisher("/predict_img", Image, queue_size=1) ### msg filter self.is_compressed = True image_sub = rospy.Subscriber('/camera/color/image_raw/compressed', CompressedImage, self.callback)
def get_model(self): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net_type = 'mb1-ssd' # sys.argv[1] model_path = './models/mobilenet-v1-ssd-mp-0_675.pth' # sys.argv[2] label_path = './models/voc-model-labels.txt' # sys.argv[3] class_names = [name.strip() for name in open(label_path).readlines()] net = create_mobilenetv1_ssd(len(class_names), is_test=True) net.load(model_path) predictor = create_mobilenetv1_ssd_predictor(net, candidate_size=200, device=device) return predictor
def __init__(self, mode): self.config = patch_config.patch_configs[mode]( ) # select the mode for the patch # load cfg file (.yaml) and override default cfg options in lib_ssd.utils.config_parse # cfg_from_file(self.config.cfgfile_ssds) # self.cfgfile_ssds = cfg self.device = 'cuda:0' if torch.cuda.is_available() else 'cpu' print(torch.cuda.device_count()) #self.darknet_model = Darknet(self.config.cfgfile) #self.darknet_model.load_weights(self.config.weightfile) #self.mbntv2_ssdlite_model, self.priorbox = create_model(self.cfgfile_ssds.MODEL) # COCO #self.priors = Variable(self.priorbox.forward(), volatile=True) # num_priors = grid x grid x num_anchors self.mbntv1_ssd_model = create_mobilenetv1_ssd(21, is_test=True) # VOC self.mbntv1_ssd_model.load(self.config.ssdmbntv1_model_path) if use_cuda: #self.darknet_model = self.darknet_model.eval().to(self.device) # Why eval? test! self.mbntv1_ssd_model = self.mbntv1_ssd_model.eval().to( self.device) self.patch_applier = PatchApplier().to(self.device) self.patch_transformer = PatchTransformer().to(self.device) #self.prob_extractor = MaxProbExtractor(0, 80, self.config).to(self.device) self.score_extractor_ssd = ssd_feature_output_manage( 15, 21, self.config).to( self.device ) # 15 is person class in VOC (with 21 elements) self.nps_calculator = NPSCalculator(self.config.printfile, self.config.patch_size).to( self.device) self.total_variation = TotalVariation().to(self.device) else: #self.darknet_model = self.darknet_model.eval() # Why eval? test! self.mbntv1_ssd_model = self.mbntv1_ssd_model.eval() self.patch_applier = PatchApplier() self.patch_transformer = PatchTransformer() #self.prob_extractor = MaxProbExtractor(0, 80, self.config) self.score_extractor_ssd = ssd_feature_output_manage( 15, 21, self.config).to(self.device) self.nps_calculator = NPSCalculator(self.config.printfile, self.config.patch_size) self.total_variation = TotalVariation()
def net_select(model_type, class_names): if model_type == 'vgg16-ssd': return create_vgg_ssd(len(class_names), is_test=True) elif model_type == 'mb1-ssd': return create_mobilenetv1_ssd(len(class_names), is_test=True) elif model_type == 'mb1-ssd-lite': return create_mobilenetv1_ssd_lite(len(class_names), is_test=True) elif model_type == 'mb2-ssd-lite': return create_mobilenetv2_ssd_lite(len(class_names), is_test=True) elif model_type == 'sq-ssd-lite': return create_squeezenet_ssd_lite(len(class_names), is_test=True) else: print( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) sys.exit(1)
def _create_network(self, net_type): if net_type == 'vgg16-ssd': return create_vgg_ssd(len(self.class_names), is_test=True) elif net_type == 'mb1-ssd': return create_mobilenetv1_ssd(len(self.class_names), is_test=True) elif net_type == 'mb1-ssd-lite': return create_mobilenetv1_ssd_lite(len(self.class_names), is_test=True) elif net_type == 'mb2-ssd-lite': return create_mobilenetv2_ssd_lite(len(self.class_names), is_test=True) elif net_type == 'sq-ssd-lite': return create_squeezenet_ssd_lite(len(self.class_names), is_test=True) else: raise RuntimeError( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." )
def select_net(model_path, net_type, num_classes): ''' 选择模型 :param model_path: 模型路径 :param net_type: 模型类型 :param num_classes: label个数,label=0,是背景 :return: ''' if net_type == 'vgg16-ssd': net = create_vgg_ssd(num_classes, is_test=True) elif net_type == 'mb1-ssd': net = create_mobilenetv1_ssd(num_classes, is_test=True) elif net_type == 'mb1-ssd-lite': net = create_mobilenetv1_ssd_lite(num_classes, is_test=True) elif net_type == 'mb2-ssd-lite': net = create_mobilenetv2_ssd_lite(num_classes, is_test=True, device=device) elif net_type == 'sq-ssd-lite': net = create_squeezenet_ssd_lite(num_classes, is_test=True) else: print( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) sys.exit(1) net.load(model_path) if net_type == 'vgg16-ssd': predictor = create_vgg_ssd_predictor(net, candidate_size=200) elif net_type == 'mb1-ssd': predictor = create_mobilenetv1_ssd_predictor(net, candidate_size=200) elif net_type == 'mb1-ssd-lite': predictor = create_mobilenetv1_ssd_lite_predictor(net, candidate_size=200) elif net_type == 'mb2-ssd-lite': predictor = create_mobilenetv2_ssd_lite_predictor(net, candidate_size=200, device=device) elif net_type == 'sq-ssd-lite': predictor = create_squeezenet_ssd_lite_predictor(net, candidate_size=200) else: predictor = create_vgg_ssd_predictor(net, candidate_size=200) return predictor
def __init__(self): model = "v1" r = rospkg.RosPack() path = r.get_path('ssd_mobile_lite') model_name = "Epoch-630-Loss-0.4744.pth" self.prob_threshold = 0.5 self.cv_bridge = CvBridge() self.labels = ['BACKGROUND', 'backpack'] if model == "v2_lite": self.network = create_mobilenetv2_ssd_lite(len(self.labels), is_test=True) elif model == "v1": self.network = create_mobilenetv1_ssd(len(self.labels), is_test=True) elif model == "v1_lite": self.network = create_mobilenetv1_ssd_lite(len(self.labels), is_test=True) state_dict = torch.load(os.path.join(path, "weights/", model_name)) self.network.load_state_dict(state_dict) DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.network.to(DEVICE) if model == "v2_lite": self.predictor = create_mobilenetv2_ssd_lite_predictor(self.network, candidate_size=200, device = DEVICE) elif model == "v1_lite": self.predictor = create_mobilenetv1_ssd_lite_predictor(self.network, candidate_size=200, device = DEVICE) elif model == "v1": self.predictor = create_mobilenetv1_ssd_predictor(self.network, candidate_size=200, device = DEVICE) ## Publisher self.image_pub = rospy.Publisher("camera/predict_img/", Image, queue_size=1) self.BoundingBoxes_pub = rospy.Publisher("BoundingBoxes/", BoundingBoxes, queue_size = 1) ## msg filter self.depth_sub = message_filters.Subscriber( "camera/aligned_depth_to_color/image_raw", Image) self.image_sub = message_filters.Subscriber("camera/color/image_raw", Image) self.ts = message_filters.ApproximateTimeSynchronizer( [self.image_sub, self.depth_sub], 5, 5) self.ts.registerCallback(self.img_cb) print("Start Predicting image")
def __init__(self): model = "v1" self.prob_threshold = 0.65 self.cv_bridge = CvBridge() self.num_points = 8000 self.labels = ['background' , # always index 0 'duckie_car','house','broken','duck'] self.objects = [] if model == "v2_lite": self.network = create_mobilenetv2_ssd_lite(len(self.labels), is_test=True) model_dir = "/home/nvidia" model_name = "model1.pth" elif model == "v1": self.network = create_mobilenetv1_ssd(len(self.labels), is_test=True) model_dir = "/home/nvidia" model_name = "model.pth" elif model == "v1_lite": self.network = create_mobilenetv1_ssd_lite(len(self.labels), is_test=True) model_dir = "/home/nvidia/" model_name = "model.pth" state_dict = torch.load(os.path.join(model_dir, model_name)) self.network.load_state_dict(state_dict) DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.network.to(DEVICE) if model == "v2_lite": self.predictor = create_mobilenetv2_ssd_lite_predictor(self.network, candidate_size=200, device = DEVICE) elif model == "v1_lite": self.predictor = create_mobilenetv1_ssd_lite_predictor(self.network, candidate_size=200, device = DEVICE) elif model == "v1": self.predictor = create_mobilenetv1_ssd_predictor(self.network, candidate_size=200, device = DEVICE) #### Publisher self.origin = rospy.Publisher('/input', bb_input, queue_size=1) self.image_pub = rospy.Publisher("/predict_img", Image, queue_size = 1) self.mask_pub = rospy.Publisher("/predict_mask", Image, queue_size = 1) self.position = rospy.Publisher("/position", Point32, queue_size = 1) ### msg filter self.is_compressed = False image_sub = rospy.Subscriber('/camera/color/image_raw', Image, self.callback)
def load_model(args): device = torch.device(args.device) print("Loading model") if (args.model == 'yolo'): # Initialize model model = Darknet(args.cfg, img_size=416) # Load weights attempt_download(args.weights) if args.weights.endswith('.pt'): # pytorch format model.load_state_dict( torch.load(args.weights, map_location=device)['model']) else: # darknet format load_darknet_weights(model, args.weights) elif (args.model == 'mobilenetv1_ssd'): model = create_mobilenetv1_ssd(len(voc_class_names), is_test=True) model.load('./saved_models/mobilenet-v1-ssd-mp-0_675.pth') else: model = detection.__dict__[args.model](num_classes=91, pretrained=args.pretrained) return model
def main(): print('cuda device count: ', torch.cuda.device_count()) DEVICE = 'cuda:0' class_names = [ name.strip() for name in open('models/voc-model-labels.txt').readlines() ] image = torch.ones(1, 3, 300, 300).to(DEVICE) net = create_mobilenetv1_ssd(len(class_names), is_test=True) net.load('models/mobilenet-v1-ssd-mp-0_675.pth') net = net.to(DEVICE) net = net.eval() scores, boxes = net(image) print(net(image)) print("Input shape ", image.shape) print("Scores shape ", scores.shape) print("Boxes shape ", boxes.shape) export_as_weights(net)
def prepare_predictor(net_type, model_path, label_path): class_names = [name.strip() for name in open(label_path).readlines()] num_classes = len(class_names) if net_type == 'vgg16-ssd': net = create_vgg_ssd(num_classes, is_test=True) elif net_type == 'mb1-ssd': net = create_mobilenetv1_ssd(num_classes, is_test=True) elif net_type == 'mb1-ssd-lite': net = create_mobilenetv1_ssd_lite(num_classes, is_test=True) elif net_type == 'mb2-ssd-lite': net = create_mobilenetv2_ssd_lite(num_classes, is_test=True) elif net_type == 'sq-ssd-lite': net = create_squeezenet_ssd_lite(num_classes, is_test=True) else: raise ValueError( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) net.load(model_path) if net_type == 'vgg16-ssd': predictor = create_vgg_ssd_predictor(net, candidate_size=200) elif net_type == 'mb1-ssd': predictor = create_mobilenetv1_ssd_predictor(net, candidate_size=200) elif net_type == 'mb1-ssd-lite': predictor = create_mobilenetv1_ssd_lite_predictor(net, candidate_size=200) elif net_type == 'mb2-ssd-lite': predictor = create_mobilenetv2_ssd_lite_predictor(net, candidate_size=200) elif net_type == 'sq-ssd-lite': predictor = create_squeezenet_ssd_lite_predictor(net, candidate_size=200) else: raise ValueError( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) return class_names, predictor
def main(args): net_type = args.net_type img_folder = args.img_folder model_path = args.weights_path label_path = args.label_path class_names = [name.strip() for name in open(label_path).readlines()] out_path = args.out_path if not os.path.exists(out_path): os.mkdir(out_path) num_gpus = torch.cuda.device_count() device = 'cuda' if num_gpus else 'cpu' if net_type == 'vgg16-ssd': net = create_vgg_ssd(len(class_names), is_test=True) elif net_type == 'mb1-ssd': net = create_mobilenetv1_ssd(len(class_names), is_test=True) elif net_type == 'mb1-ssd-lite': net = create_mobilenetv1_ssd_lite(len(class_names), is_test=True) elif net_type == 'mb2-ssd-lite': net = create_mobilenetv2_ssd_lite(len(class_names), is_test=True) elif net_type == 'sq-ssd-lite': net = create_squeezenet_ssd_lite(len(class_names), is_test=True) #elif net_type == 'mb3-ssd-lite': # net = create_mobilenetv3_ssd_lite(len(class_names), is_test=True) else: print( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) sys.exit(1) net.load(model_path) if net_type == 'vgg16-ssd': predictor = create_vgg_ssd_predictor(net, candidate_size=20, device=device) elif net_type == 'mb1-ssd': predictor = create_mobilenetv1_ssd_predictor(net, candidate_size=20, device=device) elif net_type == 'mb1-ssd-lite': predictor = create_mobilenetv1_ssd_lite_predictor(net, candidate_size=20, device=device) elif net_type == 'mb2-ssd-lite': predictor = create_mobilenetv2_ssd_lite_predictor(net, candidate_size=20, device=device) elif net_type == 'sq-ssd-lite': predictor = create_squeezenet_ssd_lite_predictor(net, candidate_size=20, device=device) #elif net_type == 'mb3-ssd-lite': # predictor = create_mobilenetv3_ssd_lite_predictor(net, candidate_size=10) else: print( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) sys.exit(1) timer = Timer() img_names = glob.glob(img_folder + os.sep + '*.jpg') #result_csv=os.path.join(out_path,'rest_result.csv') if len(img_names) == 0: print('No imagesfound in {}'.format(img_folder)) exit(-1) for img_name in img_names: image = cv2.imread(img_name) timer.start() boxes, labels, probs = predictor.predict(image, 10, 0.3) interval = timer.end() print('Time: {:.2f}s, Detect Objects: {:d}.'.format( interval, labels.size(0))) label_text = [] for i in range(boxes.size(0)): box = boxes[i, :] label = f"{class_names[labels[i]]}: {probs[i]:.2f}" label_text.append(label) cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 4) cv2.putText(image, label, (box[0] + 20, box[1] + 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 255), 2) if args.store_result: new_name = '{}/{}'.format(out_path, img_name.split('/')[-1]) cv2.imwrite(new_name, image) if not label_text: result_label = 'empty' else: result_label = label_text[0] with open(os.path.join(out_path, 'rest_result.csv'), 'a+') as result_writer: result_writer.write( img_name.split('/')[-1] + ',' + result_label + '\n') cv2.imshow('result', image) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows()
def __init__(self): model = "v1_lite" self.prob_threshold = 0.85 self.cv_bridge = CvBridge() self.num_points = 8000 self.labels = [ 'background', # always index 0 'bb_extinguisher', 'bb_drill', 'bb_backpack' ] self.objects = [] if model == "v2_lite": self.network = create_mobilenetv2_ssd_lite(len(self.labels), is_test=True) model_dir = "/home/andyser/code/exercise_ML/pytorch-ssd-mobile/models/subt_v2_lite" model_name = "model.pth" elif model == "v1": self.network = create_mobilenetv1_ssd(len(self.labels), is_test=True) model_dir = "/home/andyser/code/exercise_ML/pytorch-ssd-mobile/models/subt_v1" model_name = "model.pth" elif model == "v1_lite": self.network = create_mobilenetv1_ssd_lite(len(self.labels), is_test=True) model_dir = "/home/andyser/code/exercise_ML/pytorch-ssd-mobile/models/subt_v1_lite" model_name = "model.pth" state_dict = torch.load(os.path.join(model_dir, model_name)) self.network.load_state_dict(state_dict) DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.network.to(DEVICE) if model == "v2_lite": self.predictor = create_mobilenetv2_ssd_lite_predictor( self.network, candidate_size=200, device=DEVICE) elif model == "v1_lite": self.predictor = create_mobilenetv1_ssd_lite_predictor( self.network, candidate_size=200, device=DEVICE) elif model == "v1": self.predictor = create_mobilenetv1_ssd_predictor( self.network, candidate_size=200, device=DEVICE) #### Publisher self.origin = rospy.Publisher('/input', bb_input, queue_size=1) self.image_pub = rospy.Publisher("/predict_img", Image, queue_size=1) self.mask_pub = rospy.Publisher("/predict_mask", Image, queue_size=1) ### msg filter self.is_compressed = False video_mode = False if video_mode: image_sub = rospy.Subscriber('/camera/color/image_raw', Image, self.video_callback) else: image_sub = message_filters.Subscriber('/camera/color/image_raw', Image) depth_sub = message_filters.Subscriber( '/camera/aligned_depth_to_color/image_raw', Image) ts = message_filters.TimeSynchronizer([image_sub, depth_sub], 10) ts.registerCallback(self.callback)
def main(args): net_type = args.net_type model_path = args.weights_path label_path = args.label_path class_names = [name.strip() for name in open(label_path).readlines()] num_classes = len(class_names) if args.live: cap = cv2.VideoCapture(0) cap.set(3, 640) cap.set(4, 480) else: cap = cv2.VideoCapture(args.video_path) Fourcc = cv2.VideoWriter_fourcc('M', 'P', '4', 'V') writer = cv2.VideoWriter('result.mp4', fourcc=Fourcc, fps=15, frameSize=(640, 480)) num_gpus = torch.cuda.device_count() device = 'cuda' if num_gpus else 'cpu' if net_type == 'vgg16-ssd': net = create_vgg_ssd(len(class_names), is_test=True) elif net_type == 'mb1-ssd': net = create_mobilenetv1_ssd(len(class_names), is_test=True) elif net_type == 'mb1-ssd-lite': net = create_mobilenetv1_ssd_lite(len(class_names), is_test=True) elif net_type == 'mb2-ssd-lite': net = create_mobilenetv2_ssd_lite(len(class_names), is_test=True) elif net_type == 'sq-ssd-lite': net = create_squeezenet_ssd_lite(len(class_names), is_test=True) #elif net_type == 'mb3-ssd-lite': # net = create_mobilenetv3_ssd_lite(len(class_names), is_test=True) else: print( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) sys.exit(1) net.load(model_path) if net_type == 'vgg16-ssd': predictor = create_vgg_ssd_predictor(net, candidate_size=20, device=device) elif net_type == 'mb1-ssd': predictor = create_mobilenetv1_ssd_predictor(net, candidate_size=20, device=device) elif net_type == 'mb1-ssd-lite': predictor = create_mobilenetv1_ssd_lite_predictor(net, candidate_size=20, device=device) elif net_type == 'mb2-ssd-lite': predictor = create_mobilenetv2_ssd_lite_predictor(net, candidate_size=20, device=device) elif net_type == 'sq-ssd-lite': predictor = create_squeezenet_ssd_lite_predictor(net, candidate_size=20, device=device) #elif net_type == 'mb3-ssd-lite': # predictor = create_mobilenetv3_ssd_lite_predictor(net, candidate_size=10) else: print( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) sys.exit(1) timer = Timer() while True: _, orig_image = cap.read() if orig_image is None: print('END') break image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB) timer.start() boxes, labels, probs = predictor.predict(image, 10, 0.4) interval = timer.end() print('Time: {:.2f}s, Detect Objects: {:d}.'.format( interval, labels.size(0))) for i in range(boxes.size(0)): box = boxes[i, :] label = f"{class_names[labels[i]]}: {probs[i]:.2f}" cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 4) cv2.putText( orig_image, label, (box[0] + 20, box[1] + 40), cv2.FONT_HERSHEY_SIMPLEX, 1, # font scale (255, 0, 255), 2) # line type writer.write(orig_image) cv2.imshow('annotated', orig_image) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() writer.release() cv2.destroyAllWindows() if args.out_video: shutil.move('result.mp4', args.out_video) else: os.remove('result.mp4')
import sys if len(sys.argv) < 5: print( 'Usage: python run_ssd_example.py <net type> <model path> <image path>' ) sys.exit(0) net_type = sys.argv[1] model_path = sys.argv[2] label_path = sys.argv[3] image_path = sys.argv[4] class_names = [name.strip() for name in open(label_path).readlines()] num_classes = len(class_names) if net_type == "mobilenet-v1-ssd": net = create_mobilenetv1_ssd(num_classes, is_test=True) else: net = create_vgg_ssd(num_classes, is_test=True) net.load(model_path) if net_type == "mobilenet-v1-ssd": predictor = create_mobilenetv1_ssd_predictor(net, candidate_size=200) else: predictor = create_vgg_ssd_predictor(net, candidate_size=200) orig_image = cv2.imread(image_path) image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB) boxes, labels, probs = predictor.predict(image, 10, 0.4) for i in range(boxes.size(0)): box = boxes[i, :] cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]),
def main(args): DEVICE = torch.device( "cuda:0" if torch.cuda.is_available() and args.use_cuda else "cpu") if not os.path.exists(args.eval_dir): os.mkdir(args.eval_dir) timer = Timer() class_names = [name.strip() for name in open(args.label_file).readlines()] # dataset = Folder_image_set() # true_case_stat, all_gb_boxes, all_difficult_cases = group_annotation_by_class(dataset) if args.net == 'vgg16-ssd': net = create_vgg_ssd(len(class_names), is_test=True) elif args.net == 'mb1-ssd': net = create_mobilenetv1_ssd(len(class_names), is_test=True) elif args.net == 'mb1-ssd-lite': net = create_mobilenetv1_ssd_lite(len(class_names), is_test=True) elif args.net == 'sq-ssd-lite': net = create_squeezenet_ssd_lite(len(class_names), is_test=True) elif args.net == 'mb2-ssd-lite': net = create_mobilenetv2_ssd_lite(len(class_names), width_mult=args.mb2_width_mult, is_test=True) else: logging.fatal( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) parser.print_help(sys.stderr) sys.exit(1) #train_transform = MatchPrior(config.priors, config.center_variance, # config.size_variance, 0.5) #test_transform = TestTransform(config.image_size, config.image_mean, config.image_std) # test_transform = TestTransform(config.image_size, config.image_mean, config.image_std) # dataset = FolderDataset("/media/wy_disk/wy_file/Detection/dataset/datasets/ECP_Golden_pattern", transform = test_transform) # dataset = FolderDataset("/media/wy_disk/wy_file/Detection/dataset/datasets/ECP_Golden_pattern") dataset = FolderDataset("/media/wy_disk/ChenYen/VIRAT/dataset_orgnize/val") timer.start("Load Model") net.load(args.trained_model) net = net.to(DEVICE) print('It took {} seconds to load the model.'.format( timer.end("Load Model"))) if args.net == 'vgg16-ssd': predictor = create_vgg_ssd_predictor(net, nms_method=args.nms_method, device=DEVICE) elif args.net == 'mb1-ssd': predictor = create_mobilenetv1_ssd_predictor( net, nms_method=args.nms_method, device=DEVICE) elif args.net == 'mb1-ssd-lite': predictor = create_mobilenetv1_ssd_lite_predictor( net, nms_method=args.nms_method, device=DEVICE) elif args.net == 'sq-ssd-lite': predictor = create_squeezenet_ssd_lite_predictor( net, nms_method=args.nms_method, device=DEVICE) elif args.net == 'mb2-ssd-lite': predictor = create_mobilenetv2_ssd_lite_predictor( net, nms_method=args.nms_method, device=DEVICE) else: logging.fatal( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) parser.print_help(sys.stderr) sys.exit(1) results = [] eval_path = "eval_results" # eval_whole_image(dataset,5, predictor) eval_subblock_image(dataset, 5, predictor) import pdb pdb.set_trace() for i in range(len(dataset)): print("process image", i) timer.start("Load Image") import pdb pdb.set_trace() image = dataset.get_image(i) print("Load Image: {:4f} seconds.".format(timer.end("Load Image"))) timer.start("Predict") boxes, labels, probs = predictor.predict(image, 10, 0.5) print("Prediction: {:4f} seconds.".format(timer.end("Predict"))) # indexes = torch.ones(labels.size(0), 1, dtype=torch.float32) * i # print("index:p\t{}".format(sum(probs>0.5))) # import pdb;pdb.set_trace() boxes, labels, probs = boxes.data.numpy(), labels.data.numpy( ), probs.data.numpy() image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) for box, _label, _prob in zip(boxes, labels, probs): if _prob < 0.7: continue print(box) box = box.astype(int) # import pdb;pdb.set_trace() print(box) cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 4) # str(str.split(class_names[_label]," ")[1]) cv2.putText( image, dataset.class_names[_label], (box[0] + 20, box[1] + 40), cv2.FONT_HERSHEY_SIMPLEX, 1, # font scale (255, 0, 255), 2) # line type print(boxes.shape[0]) cv2.imshow('annotated', image) # key = cv2.waitKey(0) if cv2.waitKey(0) & 0xFF == ord('q'): break
from vision.ssd.mobilenetv1_ssd import create_mobilenetv1_ssd, create_mobilenetv1_ssd_predictor from torchsummary import summary import sys path = './models/mb1-ssd-Epoch-99-Loss-2.7295520901679993.pth' net = create_mobilenetv1_ssd(2) # net.load_state_dict() # summary(net, (300, 300, 3)) print(net)
for n in range(N): for k in range(K): v_mat = np.resize(vh[k, N * d:(N + 1) * d], (1, d)) H[n, k, :, :] = np.sqrt(s[k]) * torch.from_numpy(v_mat) return V, H timer = Timer() #pretrained Model model_path = 'models/BaseModel.pth' k = 4 #Rank #Create the network using the architectures. net = create_mobilenetv1_ssd(2, is_test=True) net_copy = create_shrinked_mobilenetv1_ssd(2, 4, is_test=True) #Load the original model net.load(model_path) #Extract the parameters of the original model params = net.state_dict() print(params.keys()) for layer in net_copy.state_dict().keys(): print(layer, net_copy.state_dict()[layer].shape) #Select the layer in the original model for computing the Low-Rank Factorization: layer = 'extras.0.2.weight'
def PersonDetector(orig_image, net_type="mb1-ssd"): class_names = [name.strip() for name in open(label_path).readlines()] num_classes = len(class_names) if net_type == 'vgg16-ssd': net = create_vgg_ssd(len(class_names), is_test=True) elif net_type == 'mb1-ssd': net = create_mobilenetv1_ssd(len(class_names), is_test=True) elif net_type == 'mb1-ssd-lite': net = create_mobilenetv1_ssd_lite(len(class_names), is_test=True) elif net_type == 'mb2-ssd-lite': net = create_mobilenetv2_ssd_lite(len(class_names), is_test=True) elif net_type == 'sq-ssd-lite': net = create_squeezenet_ssd_lite(len(class_names), is_test=True) else: print( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) sys.exit(1) net.load(model_path) if net_type == 'vgg16-ssd': predictor = create_vgg_ssd_predictor(net, candidate_size=200) elif net_type == 'mb1-ssd': predictor = create_mobilenetv1_ssd_predictor(net, candidate_size=200) elif net_type == 'mb1-ssd-lite': predictor = create_mobilenetv1_ssd_lite_predictor(net, candidate_size=200) elif net_type == 'mb2-ssd-lite': predictor = create_mobilenetv2_ssd_lite_predictor(net, candidate_size=200) elif net_type == 'sq-ssd-lite': predictor = create_squeezenet_ssd_lite_predictor(net, candidate_size=200) else: print( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) sys.exit(1) timer = Timer() image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB) timer.start() boxes, labels, probs = predictor.predict(image, 10, 0.4) interval = timer.end() print('Time: {:.2f}s, Detect Objects: {:d}.'.format( interval, labels.size(0))) max_width = -1 x, y, w, h = None, None, None, None for i in range(boxes.size(0)): box = boxes[i, :] label = f"{class_names[labels[i]]}: {probs[i]:.2f}" if (max_width < box[2] - box[0]): x, y = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] max_width = w if (x is not None and y is not None and w is not None and h is not None): cv2.rectangle(orig_image, (x, y), (w + x, h + y), (255, 255, 0), 4) return (x, y, w, h) # img = cv2.imread("Image/img.jpg") # PersonDetector(img)
#Dimension of the rectangle for the bounding box for multi-components sign x = 300 y = 100 h = 300 w = 300 elif (args.bbox == 'small'): #Dimension of the rectangle for the bounding box for handshape x = 100 y = 150 h = 200 w = 200 #Detect boundaries of hand using a detection model else: #Loading detection model detect_model = create_mobilenetv1_ssd(2, is_test=True) detect_model.load(detection_path) # Device configuration device = torch.device( 'cuda:0' if torch.cuda.is_available() else 'cpu') if device == 'cpu': print("Running on CPU.") elif device == 'cuda:0': print("Running on GPU.") predictor = create_mobilenetv1_ssd_predictor(detect_model, candidate_size=200, device=device) print("Detection Network successfully loaded...")
parser.add_argument('--mb2_width_mult', default=1.0, type=float, help='Width Multiplifier for MobilenetV2') args = parser.parse_args() DEVICE = torch.device("cuda:0" if torch.cuda.is_available() and args.use_cuda else "cpu") if __name__ == '__main__': eval_path = pathlib.Path(args.eval_dir) eval_path.mkdir(exist_ok=True) timer = Timer() class_names = [name.strip() for name in open(args.label_file).readlines()] if args.net == 'vgg16-ssd': net = create_vgg_ssd(len(class_names), is_test=True, convert_to_boxes=False) config = vgg_ssd_config elif args.net == 'mb1-ssd': net = create_mobilenetv1_ssd(len(class_names), is_test=True, convert_to_boxes=False) config = mobilenetv1_ssd_config elif args.net == 'mb1-ssd-lite': net = create_mobilenetv1_ssd_lite(len(class_names), is_test=True, convert_to_boxes=False) print("Not defined config for mb1 lite") exit(-1) elif args.net == 'sq-ssd-lite': net = create_squeezenet_ssd_lite(len(class_names), is_test=True, convert_to_boxes=False) config = squeezenet_ssd_config elif args.net == 'mb2-ssd-lite': net = create_mobilenetv2_ssd_lite(len(class_names), width_mult=args.mb2_width_mult, is_test=True, convert_to_boxes=False) print("Not defined config for mb2 lite") exit(-1) else: logging.fatal("The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite.") parser.print_help(sys.stderr)
def main(args): DEVICE = torch.device("cuda:0" if torch.cuda.is_available() and args['flow_control']['use_cuda'] else "cpu") # eval_path = pathlib.Path(args.eval_dir) # eval_path.mkdir(exist_ok=True) if not os.path.exists(args['flow_control']['eval_dir']): os.mkdir(args['flow_control']['eval_dir']) timer = Timer() class_names = [ name.strip() for name in open(args['flow_control']['label_file']).readlines() ] _net = args['flow_control']['net'] _dataset_type = args['flow_control']['dataset_type'] if _dataset_type == "voc": raise NotImplementedError("Not implement error") dataset = VOCDataset(args['flow_control']['dataset'], is_test=True) elif _dataset_type == 'open_images': raise NotImplementedError("Not implement error") dataset = OpenImagesDataset(args['flow_control']['dataset'], dataset_type="test") elif _dataset_type == "coco": # dataset = CocoDetection("/home/wenyen4desh/datasets/coco/test2017","/home/wenyen4desh/datasets/annotations/image_info_test2017.json") #dataset = CocoDetection("../../dataset/datasets/coco/val2017","../../dataset/datasets/coco/annotations/instances_val2017.json") # dataset = CocoDetection("/home/wenyen4desh/datasets/coco/train2017","/home/wenyen4desh/datasets/coco/annotations/instances_train2017.json") dataset = CocoDetection(args['Datasets']['coco']['val_image_path'], args['Datasets']['coco']['val_anno_path']) elif _dataset_type == "ecp": dataset = EuroCity_Dataset(args['Datasets']['ecp']['val_image_path'], args['Datasets']['ecp']['val_anno_path']) true_case_stat, all_gb_boxes, all_difficult_cases = group_annotation_by_class( dataset) if _net == 'vgg16-ssd': net = create_vgg_ssd(len(class_names), is_test=True) elif _net == 'mb1-ssd': net = create_mobilenetv1_ssd(len(class_names), is_test=True) elif _net == 'mb1-ssd-lite': net = create_mobilenetv1_ssd_lite(len(class_names), is_test=True) elif _net == 'sq-ssd-lite': net = create_squeezenet_ssd_lite(len(class_names), is_test=True) elif _net == 'mb2-ssd-lite': net = create_mobilenetv2_ssd_lite( len(class_names), width_mult=args['flow_control']['mb2_width_mult'], is_test=True) else: logging.fatal( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) parser.print_help(sys.stderr) sys.exit(1) #train_transform = MatchPrior(config.priors, config.center_variance, # config.size_variance, 0.5) #test_transform = TestTransform(config.image_size, config.image_mean, config.image_std) import pdb pdb.set_trace() ############################## automatically validation ############################################ timer.start("Load Model") net.load(args['flow_control']['trained_model']) net = net.to(DEVICE) print('It took {} seconds to load the model.'.format( timer.end("Load Model"))) _nms_method = args['flow_control']['nms_method'] if _net == 'vgg16-ssd': predictor = create_vgg_ssd_predictor(net, nms_method=_nms_method, device=DEVICE) elif _net == 'mb1-ssd': predictor = create_mobilenetv1_ssd_predictor(net, nms_method=_nms_method, device=DEVICE) elif _net == 'mb1-ssd-lite': predictor = create_mobilenetv1_ssd_lite_predictor( net, nms_method=_nms_method, device=DEVICE) elif _net == 'sq-ssd-lite': predictor = create_squeezenet_ssd_lite_predictor( net, nms_method=_nms_method, device=DEVICE) elif _net == 'mb2-ssd-lite': predictor = create_mobilenetv2_ssd_lite_predictor( net, nms_method=_nms_method, device=DEVICE) else: logging.fatal( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) parser.print_help(sys.stderr) sys.exit(1) results = [] # Predict Bounding Box for i in range(len(dataset)): print("process image {}", i) timer.start("Load Image") image = dataset.get_image(i) print("Load Image: {:4f} seconds.".format(timer.end("Load Image"))) timer.start("Predict") boxes, labels, probs = predictor.predict(image) print("Prediction: {:4f} seconds.".format(timer.end("Predict"))) indexes = torch.ones(labels.size(0), 1, dtype=torch.float32) * i results.append( torch.cat( [ indexes.reshape(-1, 1), labels.reshape(-1, 1).float(), probs.reshape(-1, 1), boxes + 1.0 # matlab's indexes start from 1 ], dim=1)) results = torch.cat(results) # Write the result to file for class_index, class_name in enumerate(class_names): if class_index == 0: continue # ignore background file_name = "det_test_{}.txt".format(class_name) prediction_path = os.path.join(args['flow_control']['eval_dir'], file_name) with open(prediction_path, "w") as f: sub = results[results[:, 1] == class_index, :] for i in range(sub.size(0)): prob_box = sub[i, 2:].numpy() image_id, _ = dataset.get_annotation(int(sub[i, 0])) f.write( str(image_id) + " " + " ".join([str(v) for v in prob_box]) + "\n") # image_id = dataset.ids[int(sub[i, 0])] # print(str(image_id) + " " + " ".join([str(v) for v in prob_box]), file=f) aps = [] prcs = [] recalls = [] print("\n\nAverage Precision Per-class:") for class_index, class_name in enumerate(class_names): if class_index == 0: continue file_name = "det_test_{}.txt".format(class_name) prediction_path = os.path.join(args['flow_control']['eval_dir'], file_name) # [email protected] evaluation method ap, precision, recall = compute_average_precision_per_class( args, true_case_stat[class_index], all_gb_boxes[class_index], all_difficult_cases[class_index], prediction_path, args['flow_control']['iou_threshold'], args['flow_control']['use_2007_metric']) # # COCO eval # ap, precision, recall = coco_ap_per_class( # true_case_stat[class_index], # all_gb_boxes[class_index], # all_difficult_cases[class_index], # prediction_path, # args.use_2007_metric # ) aps.append(ap) prcs.append(precision) recalls.append(recall) print("{}: {}".format(class_name, ap)) print("\nAverage Precision Across All Classes:{}".format( sum(aps[0:5]) / len(aps[0:5]))) print("\nAverage Precision :{}".format(sum(prcs[0:5]) / len(prcs[0:5]))) print("\nAverage Recall :{}".format(sum(recalls[0:5]) / len(recalls[0:5])))
running_loss += loss.item() running_regression_loss += regression_loss.item() running_classification_loss += classification_loss.item() return running_loss / num, running_regression_loss / num, running_classification_loss / num if __name__ == '__main__': timer = Timer() logging.info(args) if args.net == 'vgg16-ssd': create_net = create_vgg_ssd config = vgg_ssd_config elif args.net == 'mb1-ssd': create_net = lambda num: create_mobilenetv1_ssd(num, alpha=args.mb1_width_mult) # create_net = create_mobilenetv1_ssd config = mobilenetv1_ssd_config config = mobilenetv1_ssd_config elif args.net == 'mb1-ssd-lite': create_net = create_mobilenetv1_ssd_lite config = mobilenetv1_ssd_config elif args.net == 'sq-ssd-lite': create_net = create_squeezenet_ssd_lite config = squeezenet_ssd_config elif args.net == 'mb2-ssd-lite': create_net = lambda num: create_mobilenetv2_ssd_lite(num, width_mult=args.mb2_width_mult) config = mobilenetv1_ssd_config else: logging.fatal("The net type is wrong.") parser.print_help(sys.stderr)
from vision.ssd.mobilenet_v2_ssd_lite import create_mobilenetv2_ssd_lite, create_mobilenetv2_ssd_lite_predictor from vision.utils.misc import Timer import PySimpleGUI as sg import cv2 import numpy as np import sys import time net_type = 'mb1-ssd' model_path = './models/mb1-ssd-Epoch-1290-Loss-2.35230020682017.pth' label_path = './models/voc-model-labels.txt' class_names = [name.strip() for name in open(label_path).readlines()] num_classes = len(class_names) net = create_mobilenetv1_ssd(len(class_names), is_test=True) net.load(model_path) predictor = create_mobilenetv1_ssd_predictor(net, candidate_size=200) cap = cv2.VideoCapture(0, cv2.CAP_V4L2) # capture from camera #cap = cv2.VideoCapture(0) #cap.set(3, 1080) #cap.set(4, 940) sg.theme('DarkAmber') # define the window layout layout = [[sg.Image(filename='', key='image')], [ sg.Checkbox('ヘルメット', size=(8, 1), font='Helvetica 14'), sg.Checkbox('溶接マスク', size=(8, 1), font='Helvetica 14'), sg.Checkbox('作業着', size=(8, 1), font='Helvetica 14'),
def imwrite(dataset, net_type, epoch, model_path): num_classes = len(dataset.class_names) if net_type == 'vgg16-ssd': net = create_vgg_ssd(num_classes, is_test=True) elif net_type == 'mb1-ssd': net = create_mobilenetv1_ssd(num_classes, is_test=True) elif net_type == 'mb1-ssd-lite': net = create_mobilenetv1_ssd_lite(num_classes, is_test=True) elif net_type == 'mb2-ssd-lite': net = create_mobilenetv2_ssd_lite(num_classes, is_test=True) elif net_type == 'mb3-large-ssd-lite': net = create_mobilenetv3_large_ssd_lite(num_classes, is_test=True) elif net_type == 'mb3-small-ssd-lite': net = create_mobilenetv3_small_ssd_lite(num_classes, is_test=True) elif net_type == 'sq-ssd-lite': net = create_squeezenet_ssd_lite(num_classes, is_test=True) else: print( "The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite." ) sys.exit(1) net.load(model_path) if net_type == 'vgg16-ssd': predictor = create_vgg_ssd_predictor(net, candidate_size=200) elif net_type == 'mb1-ssd': predictor = create_mobilenetv1_ssd_predictor(net, candidate_size=200) elif net_type == 'mb1-ssd-lite': predictor = create_mobilenetv1_ssd_lite_predictor(net, candidate_size=200) elif net_type == 'mb2-ssd-lite' or net_type == "mb3-large-ssd-lite" or net_type == "mb3-small-ssd-lite": predictor = create_mobilenetv2_ssd_lite_predictor(net, candidate_size=200) elif net_type == 'sq-ssd-lite': predictor = create_squeezenet_ssd_lite_predictor(net, candidate_size=200) else: predictor = create_vgg_ssd_predictor(net, candidate_size=200) for i in range(10): image, orig_boxes, labels = dataset[i] orig_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) boxes, labels, probs = predictor.predict(image, 10, 0.4) for j in range(boxes.size(0)): # predict box = boxes[j, :] box = [int(i) for i in box] cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 1) label = f"{probs[j]:.2f}" cv2.putText( orig_image, label, (box[0] + 3, box[1] + 5), cv2.FONT_HERSHEY_SIMPLEX, 1, # font scale (255, 255, 0), 1) # line type for j in range(orig_boxes.shape[0]): # ground truth box = orig_boxes[j, :] cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]), (255, 0, 255), 1) path = f"out/{i:02}_{epoch:04}.jpg" cv2.imwrite(path, orig_image)