# Loop over subjects: for subject in subjects: sess = subjects[subject] # Loop over sessions (donepezil/placebo): for this_s in sess: ROI_files=[fmri_path+this_s[0]+'/Inplane/ROIs/R_V1.mat', fmri_path+this_s[0]+'/Inplane/ROIs/L_V1.mat'] nifti_path = fmri_path + this_s[0] + '/%s_nifti/'%this_s[0] # Get the coordinates of the ROIs, while accounting for the # up-sampling: # ROI_coords = [tsv.upsample_coords(tsv.getROIcoords(f),up_samp) for f in ROI_files] # Initialize lists for each behavioral condition: t_fix = [] t_left = [] t_right = [] for this_fix in this_s[1]['fix_nii']: # Read data from each ROI, from each voxel. If you want to # average across voxels, set the "average" kwarg to True: # what's this filter? Does it average? t_fix.append(load_nii(nifti_path+this_fix, ROI_coords, TR,
def main(): #inputs # scanner = sys.argv[1] # subject = sys.argv[2] # rois = ['LLGN_ecc0','LLGN_ecc14','LLGN_polar0','LLGN_polar5', # 'RLGN_ecc2','RLGN_ecc9','RLGN_polar2','RLGN_polar4'] rois = [ 'LV1_ecc0-2', 'LV1_ecc10-18', 'LV1_polar602-026', 'LV1_polar474-526', 'RV1_ecc1-3', 'RV1_ecc7-11', 'RV1_polar174-226', 'RV1_polar374-426' ] # rois = ['RV1','LV1','RV2v','LV2v','RV2d','LV2d','RV3v','LV3v','RV3d','LV3d'] combine_early_vis_rois = False #paths # sdirs = sio.loadmat('/Volumes/Plata1/LGN/Group_Analyses/subjectDirs_20121103.mat') # if scanner=='3T': # subject_dirs = sdirs['subjectDirs3T'] # elif scanner=='7T': # subject_dirs = sdirs['subjectDirs7T'] # # data_dir = '/Volumes/Plata1/LGN/Scans/{0}/{1}/{2}/'.format( # scanner, subject_dirs[subject,0][0], subject_dirs[subject,1][0]) # nifti_dir = '{0}/{1}_nifti/'.format(data_dir, subject_dirs[subject,1][0]) # roi_dir = '{0}/Inplane/ROIs/'.format(data_dir) # out_dir = '{0}/Masks/'.format(data_dir) data_dir = '/Volumes/Plata1/LGN/Scans/7T/JN_20120808_Session/JN_20120808_fslDC/' nifti_dir = os.path.join(data_dir, 'JN_20120808_fslDC_nifti/') roi_dir = os.path.join(data_dir, 'Inplane/ROIs/') out_dir = os.path.join(data_dir, 'Masks/') print data_dir #constants up_samp = [1.0000, 1.0000, 1.0000] #upsample factor from EPI to GEM # up_samp = [2.5606,2.5606,1.0000] #usually epi: 2.220 x 2.220 x 2.300; gem: 0.867x0.867x2.300 example_epi = nifti_dir + 'epi01_fix_fsldc.nii.gz' #Loop over ROIs for roi in rois: roi_file = roi_dir + roi + '.mat' #get the coordinates for the ROI, accounting for upsampling # upsample_coords takes into account 1 vs. 0-based indexing roi_coords = tsv.upsample_coords(tsv.getROIcoords(roi_file), up_samp) #save this to a text file for AFNI fout_coords = out_dir + roi + '_coords.txt' np.savetxt(fout_coords, roi_coords.transpose()) #run afni 3dUndump command to make this into an ROI fout_nii = out_dir + roi + '_orig.nii' command = "3dUndump -prefix %s -master %s %s" % (fout_nii, example_epi, fout_coords) util.remove_previous_files(fout_nii) #remove file if it exists print command os.system(command) #Looks like this is R/L flipped? Flipping to normal print 'Flipping ROI' fout_nii_new = out_dir + roi + '.nii' command = "3dresample -orient LPI -prefix %s -inset %s" % ( fout_nii_new, fout_nii) util.remove_previous_files(fout_nii_new) os.system(command) # we don't need the orig file anymore, it is L-R reversed # util.remove_previous_files(fout_nii) #Sum together ROI pairs to get a single V1,V2, and V3 if combine_early_vis_rois: print 'Making large *all* ROIs' roi_final = ['V1', 'V2', 'V3'] for roi in roi_final: fout = out_dir + '_all' + roi + '.nii.gz' fout_d = out_dir + '_all' + roi + 'd.nii.gz' fout_v = out_dirout_dir + '_all' + roi + 'v.nii.gz' if roi == 'V1': #note: ispositive is used to deal with potential overlap command = "3dcalc -a %s%s_L%s.nii.gz -b %s%s_R%s.nii.gz -expr 'ispositive(a+b)' -prefix %s" % ( out_dir, sub, roi, out_dir, sub, roi, fout) util.remove_previous_files(fout) os.system(command) else: command = "3dcalc -a %s%s_L%sd.nii.gz -b %s%s_R%sd.nii.gz -c %s%s_L%sv.nii.gz -d %s%s_R%sv.nii.gz -expr 'ispositive(a+b+c+d)' -prefix %s" % ( out_dir, sub, roi, out_dir, sub, roi, out_dir, sub, roi, out_dir, sub, roi, fout) util.remove_previous_files(fout) os.system(command) command = "3dcalc -a %s%s_L%sv.nii.gz -b %s%s_R%sv.nii.gz -expr 'ispositive(a+b)' -prefix %s" % ( out_dir, sub, roi, out_dir, sub, roi, fout_v) util.remove_previous_files(fout_v) os.system(command) command = "3dcalc -a %s%s_L%sd.nii.gz -b %s%s_R%sd.nii.gz -expr 'ispositive(a+b)' -prefix %s" % ( out_dir, sub, roi, out_dir, sub, roi, fout_d) util.remove_previous_files(fout_d) os.system(command)
for subject in subjects: sess = subjects[subject] # Loop over sessions (donepezil/placebo): for this_s in sess: ROI_files = [ fmri_path + this_s[0] + '/Inplane/ROIs/R_V1.mat', fmri_path + this_s[0] + '/Inplane/ROIs/L_V1.mat' ] nifti_path = fmri_path + this_s[0] + '/%s_nifti/' % this_s[0] # Get the coordinates of the ROIs, while accounting for the # up-sampling: # ROI_coords = [ tsv.upsample_coords(tsv.getROIcoords(f), up_samp) for f in ROI_files ] # Initialize lists for each behavioral condition: t_fix = [] t_left = [] t_right = [] for this_fix in this_s[1]['fix_nii']: # Read data from each ROI, from each voxel. If you want to # average across voxels, set the "average" kwarg to True: # what's this filter? Does it average? t_fix.append( load_nii(nifti_path + this_fix,
for i_seed, seed_name in enumerate(seed_rois): print '\n', seed_name, seed_roi_type if seed_roi_type is 'mask': seed_file = os.path.join(mask_roi_dir, '{}.nii'.format(seed_name)) # load roi mask seed_mask = nib.load(seed_file) # find the coordinates of the seed voxels seed_vals = seed_mask.get_data() seed_coords = np.array(np.where(seed_vals==1)) elif seed_roi_type is 'mrvista': seed_file = os.path.join(mrvista_roi_dir, '{}.mat'.format(seed_name)) # get the coordinates of the seed voxels seed_coords = tsv.upsample_coords(tsv.getROIcoords(seed_file), upsample_factor) if flip_mrvista_x: seed_coords[0] = (volume_shape[0]-1) - (seed_coords[0]) else: print 'seed roi type not recognized' # make the seed time series (mean of roi time series) seed_ts[i_seed] = ntio.time_series_from_file(data_file, coords=seed_coords, TR=TR, normalize='percent', average=True, filter=dict(lb=f_lb, ub=f_ub, method='boxcar'),
for subject in subjects: # Get session for sess in session: sessName = subjects[subject][sess] # Get ROIs roi_names=np.array(rois[subject][sess][1]) ROI_files=[] for roi in rois[subject][sess][1]: ROI_files.append(fmri_path+sessName[0]+'/Inplane/ROIs/' +roi +'.mat') # Get the coordinates of the ROIs, while accounting for the # up-sampling: ROI_coords = [tsv.upsample_coords(tsv.getROIcoords(f),up_samp) for f in ROI_files] nifti_path = fmri_path +sessName[0] + '/%s_nifti/' % sessName[0] reg_path=fmri_path+sessName[0]+'/regressors/' # Add filtering filterType='boxcar' #Go through each run and save out ROIs as nifti file for runName in allRuns: print 'Analyzing ' + runName # Initialize lists for each condition: t_fix = [] print runName saveFile=base_path+ 'fmri/Results/timeseries/'+subject+sessionName[sess]+'_'+runName+'_%sROIts_%sReg_meanROI_stc.pck' % (len(roi_names), len(nuisReg))
def main(): #inputs # scanner = sys.argv[1] # subject = sys.argv[2] # rois = ['LLGN_ecc0','LLGN_ecc14','LLGN_polar0','LLGN_polar5', # 'RLGN_ecc2','RLGN_ecc9','RLGN_polar2','RLGN_polar4'] rois = ['LV1_ecc0-2', 'LV1_ecc10-18', 'LV1_polar602-026', 'LV1_polar474-526', 'RV1_ecc1-3', 'RV1_ecc7-11', 'RV1_polar174-226', 'RV1_polar374-426'] # rois = ['RV1','LV1','RV2v','LV2v','RV2d','LV2d','RV3v','LV3v','RV3d','LV3d'] combine_early_vis_rois = False #paths # sdirs = sio.loadmat('/Volumes/Plata1/LGN/Group_Analyses/subjectDirs_20121103.mat') # if scanner=='3T': # subject_dirs = sdirs['subjectDirs3T'] # elif scanner=='7T': # subject_dirs = sdirs['subjectDirs7T'] # # data_dir = '/Volumes/Plata1/LGN/Scans/{0}/{1}/{2}/'.format( # scanner, subject_dirs[subject,0][0], subject_dirs[subject,1][0]) # nifti_dir = '{0}/{1}_nifti/'.format(data_dir, subject_dirs[subject,1][0]) # roi_dir = '{0}/Inplane/ROIs/'.format(data_dir) # out_dir = '{0}/Masks/'.format(data_dir) data_dir = '/Volumes/Plata1/LGN/Scans/7T/JN_20120808_Session/JN_20120808_fslDC/' nifti_dir = os.path.join(data_dir,'JN_20120808_fslDC_nifti/') roi_dir = os.path.join(data_dir,'Inplane/ROIs/') out_dir = os.path.join(data_dir,'Masks/') print data_dir #constants up_samp = [1.0000,1.0000,1.0000] #upsample factor from EPI to GEM # up_samp = [2.5606,2.5606,1.0000] #usually epi: 2.220 x 2.220 x 2.300; gem: 0.867x0.867x2.300 example_epi = nifti_dir + 'epi01_fix_fsldc.nii.gz' #Loop over ROIs for roi in rois: roi_file = roi_dir + roi + '.mat' #get the coordinates for the ROI, accounting for upsampling # upsample_coords takes into account 1 vs. 0-based indexing roi_coords = tsv.upsample_coords(tsv.getROIcoords(roi_file),up_samp) #save this to a text file for AFNI fout_coords = out_dir + roi + '_coords.txt' np.savetxt(fout_coords,roi_coords.transpose()) #run afni 3dUndump command to make this into an ROI fout_nii = out_dir + roi + '_orig.nii' command = "3dUndump -prefix %s -master %s %s" %(fout_nii, example_epi, fout_coords) util.remove_previous_files(fout_nii) #remove file if it exists print command os.system(command) #Looks like this is R/L flipped? Flipping to normal print 'Flipping ROI' fout_nii_new = out_dir + roi + '.nii' command = "3dresample -orient LPI -prefix %s -inset %s" %(fout_nii_new, fout_nii) util.remove_previous_files(fout_nii_new) os.system(command) # we don't need the orig file anymore, it is L-R reversed # util.remove_previous_files(fout_nii) #Sum together ROI pairs to get a single V1,V2, and V3 if combine_early_vis_rois: print 'Making large *all* ROIs' roi_final = ['V1','V2','V3'] for roi in roi_final: fout = out_dir + '_all' + roi + '.nii.gz' fout_d = out_dir + '_all' + roi + 'd.nii.gz' fout_v = out_dirout_dir + '_all' + roi + 'v.nii.gz' if roi == 'V1': #note: ispositive is used to deal with potential overlap command = "3dcalc -a %s%s_L%s.nii.gz -b %s%s_R%s.nii.gz -expr 'ispositive(a+b)' -prefix %s" %(out_dir,sub,roi,out_dir,sub,roi,fout) util.remove_previous_files(fout) os.system(command) else: command = "3dcalc -a %s%s_L%sd.nii.gz -b %s%s_R%sd.nii.gz -c %s%s_L%sv.nii.gz -d %s%s_R%sv.nii.gz -expr 'ispositive(a+b+c+d)' -prefix %s" %(out_dir,sub,roi,out_dir,sub,roi,out_dir,sub,roi,out_dir,sub,roi,fout) util.remove_previous_files(fout) os.system(command) command = "3dcalc -a %s%s_L%sv.nii.gz -b %s%s_R%sv.nii.gz -expr 'ispositive(a+b)' -prefix %s" %(out_dir,sub,roi,out_dir,sub,roi,fout_v) util.remove_previous_files(fout_v) os.system(command) command = "3dcalc -a %s%s_L%sd.nii.gz -b %s%s_R%sd.nii.gz -expr 'ispositive(a+b)' -prefix %s" %(out_dir,sub,roi,out_dir,sub,roi,fout_d) util.remove_previous_files(fout_d) os.system(command)
# load data data = nib.load(data_file) volume_shape = data.shape[:-1] n_TRs = data.shape[-1] # Get seed data # initialize seed time series seed_ts = np.zeros((len(seed_rois), n_TRs)) for i_seed, seed_name in enumerate(seed_rois): print '\n', seed_name seed_file = os.path.join(roi_dir, '{}.mat'.format(seed_name)) # get the coordinates of the seed voxels seed_coords = tsv.upsample_coords(tsv.getROIcoords(seed_file), upsample_factor) if flip_x: seed_coords[0] = (volume_shape[0]-1) - (seed_coords[0]) # make the seed time series (mean of roi time series) # this is a little odd - reads the data as a TimeSeries, then just takes the data ... seed_ts[i_seed] = ntio.time_series_from_file(data_file, coords=seed_coords, TR=TR, normalize=None, average=True, filter=dict(lb=f_lb, ub=f_ub, method='boxcar'), verbose=True).data
for i_seed, seed_name in enumerate(seed_rois): print '\n', seed_name, seed_roi_type if seed_roi_type is 'mask': seed_file = os.path.join(mask_roi_dir, '{}.nii'.format(seed_name)) # load roi mask seed_mask = nib.load(seed_file) # find the coordinates of the seed voxels seed_vals = seed_mask.get_data() seed_coords = np.array(np.where(seed_vals == 1)) elif seed_roi_type is 'mrvista': seed_file = os.path.join(mrvista_roi_dir, '{}.mat'.format(seed_name)) # get the coordinates of the seed voxels seed_coords = tsv.upsample_coords(tsv.getROIcoords(seed_file), upsample_factor) if flip_mrvista_x: seed_coords[0] = (volume_shape[0] - 1) - (seed_coords[0]) else: print 'seed roi type not recognized' # make the seed time series (mean of roi time series) seed_ts[i_seed] = ntio.time_series_from_file(data_file, coords=seed_coords, TR=TR, normalize='percent', average=True, filter=dict(lb=f_lb, ub=f_ub,