def embedding(tag, labels, hot_vectors, step, labels_meta=None, walltime=None): """Package data to one embedding. Args: tag (string): Data identifier labels (list): A list of labels. hot_vectors (np.array or list): A matrix which each row is feature of labels. step (int): Step of embeddings. walltime (int): Wall time of embeddings. Return: Package with format of record_pb2.Record """ embeddings = Record.Embeddings() if labels_meta: embeddings.label_meta.extend(labels_meta) if isinstance(labels[0], list): temp = [] for index in range(len(labels[0])): temp.append([label[index] for label in labels]) labels = temp for label, hot_vector in zip(labels, hot_vectors): if not isinstance(label, list): label = [label] embeddings.embeddings.append( Record.Embedding(label=label, vectors=hot_vector)) return Record(values=[ Record.Value( id=step, tag=tag, timestamp=walltime, embeddings=embeddings) ])
def embedding(tag, labels, hot_vectors, step, walltime=None): """Package data to one embedding. Args: tag (string): Data identifier labels (numpy.array or list): A list of labels. hot_vectors (numpy.array or list): A matrix which each row is feature of labels. step (int): Step of embeddings. walltime (int): Wall time of embeddings. Return: Package with format of record_pb2.Record """ embeddings = Record.Embeddings() for index in range(len(hot_vectors)): embeddings.embeddings.append( Record.Embedding(label=labels[index], vectors=hot_vectors[index])) return Record(values=[ Record.Value( id=step, tag=tag, timestamp=walltime, embeddings=embeddings) ])