def convert_to_pivot(): """ 統一ピボット形式へデータを変換 """ # データ置き場 target_directory = "analysis/result/Comparison_20160222" # 対象 target_method = "LDA" target_data = "all" plot_type = "box" # pivot作成対象となるデータのパラメータ、結果ファイル名を格納したtable.csvを読込む parameter_list, filename_list = read_table(os.path.join(target_directory, target_method, "table.csv")) # パラメータの読み込み parametername_list = ["_".join(str(p)) for p in parameter_list] # 対応するデータの読み込み data_list = [] for i in range(len(filename_list)): target_filename = os.path.join(target_directory, target_method, filename_list[i]) # データの読み込み _subject_list, _data_list = read_data(target_filename, target_data) data_list.append(_data_list) # header_list = ["signal", "re_method", "re_size", "feature", "nfold", "subject_id","accuracy","loss","average_precition", "average_recall","average_Fmeasure","average_distance","corr","p_value"] output_filename = os.path.join(target_directory, target_method + ".csv") generate_pivot(header_list, parameter_list, data_list, output_filename)
def convert_to_pivot(): """ 統一ピボット形式へデータを変換 """ # データ置き場 target_directory = "analysis/result/Comparison_20160222" # 対象 target_method = "LDA" target_data = "all" plot_type = "box" # pivot作成対象となるデータのパラメータ、結果ファイル名を格納したtable.csvを読込む parameter_list, filename_list = read_table( os.path.join(target_directory, target_method, "table.csv")) # パラメータの読み込み parametername_list = ["_".join(str(p)) for p in parameter_list] # 対応するデータの読み込み data_list = [] for i in range(len(filename_list)): target_filename = os.path.join(target_directory, target_method, filename_list[i]) # データの読み込み _subject_list, _data_list = read_data(target_filename, target_data) data_list.append(_data_list) # header_list = [ "signal", "re_method", "re_size", "feature", "nfold", "subject_id", "accuracy", "loss", "average_precition", "average_recall", "average_Fmeasure", "average_distance", "corr", "p_value" ] output_filename = os.path.join(target_directory, target_method + ".csv") generate_pivot(header_list, parameter_list, data_list, output_filename)
def visualize(): # データ置き場 target_directory = "analysis/result/Comparison_20160222" # 視覚化対象 target_method = "LDA" target_data = "accuracy" plot_type = "box" # 描画 parameter_list, filename_list = read_table(os.path.join(target_directory, target_method, "table.csv")) parametername_list = ["_".join(p) for p in parameter_list] data_list = [] for i in range(len(parameter_list)): target_filename = os.path.join(target_directory, target_method, filename_list[i]) subject, data = read_data(target_filename, target_data) data_list.append(data) data_size = len(data_list) box_plot(data_list[:data_size/3], parametername_list[:data_size/3], target_data, 0.0, _title = "HBX") box_plot(data_list[data_size/3:data_size/3*2], parametername_list[data_size/3:data_size/3*2], target_data, 0.0, _title = "HBX3") box_plot(data_list[data_size/3*2:], parametername_list[data_size/3*2:], target_data, 0.0, _title = "HBX1")
def visualize(): # データ置き場 target_directory = "analysis/result/Comparison_20160222" # 視覚化対象 target_method = "LDA" target_data = "accuracy" plot_type = "box" # 描画 parameter_list, filename_list = read_table( os.path.join(target_directory, target_method, "table.csv")) parametername_list = ["_".join(p) for p in parameter_list] data_list = [] for i in range(len(parameter_list)): target_filename = os.path.join(target_directory, target_method, filename_list[i]) subject, data = read_data(target_filename, target_data) data_list.append(data) data_size = len(data_list) box_plot(data_list[:data_size / 3], parametername_list[:data_size / 3], target_data, 0.0, _title="HBX") box_plot(data_list[data_size / 3:data_size / 3 * 2], parametername_list[data_size / 3:data_size / 3 * 2], target_data, 0.0, _title="HBX3") box_plot(data_list[data_size / 3 * 2:], parametername_list[data_size / 3 * 2:], target_data, 0.0, _title="HBX1")