예제 #1
0
def run(opt, model, data_loader, mode):
	if torch.cuda.is_available():
		device = torch.device('cuda:'+str(opt.gpu_id))  
	else:
		device = torch.device('cpu')
	model = model.to(device)

	tryon_dir = os.path.join(opt.data_root, mode, 'tryon-person')
	mkdir(tryon_dir)
	visual_dir = os.path.join(opt.out_dir, opt.name, mode)
	mkdir(visual_dir)

	data_iter = tqdm(data_loader, total=len(data_loader), bar_format='{l_bar}{r_bar}')
	for _data in data_iter:
		data = {}
		for key, value in _data.items():
			if not 'name' in key:
				data[key] = value.to(device) # Load data on GPU
			else:
				data[key] = value
		cloth = data['cloth']
		cloth_mask = data['cloth_mask']
		person = data['person']
		cloth_name = data['cloth_name']

		outputs = model(torch.cat([data['feature'], cloth],1)) # (batch, channel, height, width)
		rendered_person, composition_mask = torch.split(outputs, 3,1)
		rendered_person = torch.tanh(rendered_person)
		composition_mask = torch.sigmoid(composition_mask)
		tryon_person = cloth*composition_mask + rendered_person*(1-composition_mask)
		visuals = [[data['head'], data['shape'], data['pose']], 
				[cloth, cloth_mask*2-1, composition_mask*2-1], 
				[rendered_person, tryon_person, person]]
		save_images(tryon_person, cloth_name, tryon_dir) 
		save_visual(visuals, cloth_name, visual_dir)
예제 #2
0
def run(opt, model, data_loader, mode):
    if torch.cuda.is_available():
        device = torch.device('cuda:' + str(opt.gpu_id))
    else:
        device = torch.device('cpu')
    model = model.to(device)

    warp_cloth_dir = os.path.join(opt.data_root, mode, 'warp-cloth')
    warp_cloth_mask_dir = os.path.join(opt.data_root, mode, 'warp-cloth-mask')
    visual_dir = os.path.join(opt.out_dir, opt.name, mode)
    dirs = [warp_cloth_dir, warp_cloth_mask_dir, visual_dir]
    for d in dirs:
        mkdir(d)

    data_iter = tqdm(data_loader,
                     total=len(data_loader),
                     bar_format='{l_bar}{r_bar}')
    for _data in data_iter:
        data = {}
        for key, value in _data.items():
            if not 'name' in key:
                data[key] = value.to(device)  # Load data on GPU
            else:
                data[key] = value
        cloth = data['cloth']
        person = data['person']
        body_mask = data['body_mask']
        cloth_name = data['cloth_name']

        grid, _ = model(data['feature'], cloth)
        warped_cloth = F.grid_sample(cloth, grid, padding_mode='border')
        warped_cloth_mask = F.grid_sample(data['cloth_mask'],
                                          grid,
                                          padding_mode='zeros')
        save_images(warped_cloth, cloth_name, warp_cloth_dir)
        save_images(warped_cloth_mask * 2 - 1, cloth_name, warp_cloth_mask_dir)
        if mode == 'train':  # No visuals
            continue

        warped_grid = F.grid_sample(data['grid'], grid, padding_mode='zeros')
        warped_person = body_mask * person + (1 - body_mask) * warped_cloth
        gt = body_mask * person + (1 - body_mask) * data['cloth_parse']
        visuals = [[data['head'], data['shape'], data['pose']],
                   [cloth, warped_cloth, warped_grid],
                   [warped_person, gt, person]]
        save_visual(visuals, cloth_name, visual_dir)
예제 #3
0
def main():
    """ Training
    run python main.py --dataset toumingzhi --model myganomaly --load_final_weights --batchsize 30
    """
    opt = Options().parse()
    dataloader = load_data(opt)
    model = load_model(opt, dataloader)
    print(model.device)
    model.load_weights()
    model.netd.eval()
    model.netg.eval()
    epoch = 0
    print(
        f">> Evaluating {model.name} on {model.opt.dataset} to detect {model.opt.abnormal_class}"
    )
    threshold = 0.016
    # the code runs much slower in the first time, so run twice to measure its real speed
    for i in range(2):
        time_start = time.time()
        with torch.no_grad():
            # Create big error tensor for the test set.
            an_scores = torch.zeros(size=(len(
                model.dataloader.valid.dataset), ),
                                    dtype=torch.float32,
                                    device=model.device)
            gt_labels = torch.zeros(size=(len(
                model.dataloader.valid.dataset), ),
                                    dtype=torch.long,
                                    device=model.device)
            times = []
            for i, data in enumerate(model.dataloader.valid, 0):
                time_i = time.time()
                inputdata = data[0].to(model.device)
                label = data[1].to(model.device)
                fake, latent_i, latent_o = model.netg(inputdata)

                _, feat_real = model.netd(inputdata)
                _, feat_fake = model.netd(fake)
                error = torch.mean(torch.pow((latent_i - latent_o), 2), dim=1)

                time_o = time.time()

                an_scores[i * model.opt.batchsize:i * model.opt.batchsize +
                          error.size(0)] = error.reshape(error.size(0))
                gt_labels[i * model.opt.batchsize:i * model.opt.batchsize +
                          error.size(0)] = label.reshape(error.size(0))

                if model.opt.save_test_images and i == 0:
                    test_img_dst = os.path.join(model.opt.outfolder,
                                                model.opt.name,
                                                model.opt.abnormal_class,
                                                'test', 'images')
                    visualize.save_images(test_img_dst, epoch, inputdata, fake)

                # if model.opt.visulize_feature and i == 0:
                #     feature_img_dst = os.path.join(model.opt.outtrain_dir, 'features')
                #     visualize.tsne_3D(feature_img_dst, epoch, 'feature',
                #                       feat_real.reshape(feat_real.size(0), -1).cpu().numpy(),
                #                       label.reshape(label.size(0), -1).cpu().numpy())
                #     visualize.tsne_2D(feature_img_dst, epoch, 'feature',
                #                       feat_real.reshape(feat_real.size(0), -1).cpu().numpy(),
                #                       label.reshape(label.size(0), -1).cpu().numpy())

                times.append(time_o - time_i)

            times = np.array(times)
            times = np.mean(times[:100] * 1000)
        # Scale error vector between [0, 1]
        an_scores = (an_scores - torch.min(an_scores)) / (
            torch.max(an_scores) - torch.min(an_scores))

        nrm_trn_idx = torch.from_numpy(
            np.where(an_scores.cpu().numpy() < threshold)[0])
        """ predicte labels for test images, 0 is normal, 1 is anomaly
        """
        pre_labels = torch.ones_like(gt_labels)
        pre_labels[nrm_trn_idx] = 0
        auc = evaluate(gt_labels, an_scores, metric=model.opt.metric)
        # normal_scores = an_scores[np.where(gt_labels.cpu() == 0)[0]]
        # abnormal_scores = an_scores[np.where(gt_labels.cpu() != 0)[0]]
        # print("normal_scores:")
        # print(normal_scores)
        # print('abnormal_scores:')
        # print(abnormal_scores)
        # print(gt_labels)
        print('pre_labels:')
        print(pre_labels)
        performance = OrderedDict([('Avg Run Time (ms/batch)', times),
                                   ('AUC', auc)])
        print(performance)
        print('total time:')
        print((time.time() - time_start) * 1000)
예제 #4
0
    def train(self):
        opt = self.opt
        # device to be finished==================================================
        real_label = torch.ones(size=(opt.batchsize, ),
                                dtype=torch.float32,
                                device=self.device)
        fake_label = torch.zeros(size=(opt.batchsize, ),
                                 dtype=torch.float32,
                                 device=self.device)
        optimizer_d = optim.Adam(self.netd.parameters(),
                                 lr=opt.lr,
                                 betas=(opt.beta1, 0.999))
        optimizer_g = optim.Adam(self.netg.parameters(),
                                 lr=opt.lr,
                                 betas=(opt.beta1, 0.999))
        l_bce = nn.BCELoss()
        l_adv = l2_loss
        l_con = nn.L1Loss()
        l_enc = l2_loss

        if opt.load_best_weights or opt.load_final_weights:
            self.load_weights()

        print(
            f">> Training {self.name} on {opt.dataset} to detect {opt.abnormal_class}"
        )
        best_auc = 0
        loss_d = []
        loss_g = []
        for epoch in range(opt.nepoch):
            iternum = 0
            running_loss_g = 0.0
            running_loss_d = 0.0
            self.netd.train()
            self.netg.train()
            for i, data in enumerate(
                    tqdm(self.dataloader.train,
                         leave=False,
                         total=len(self.dataloader.train),
                         ncols=80)):
                iternum = iternum + 1
                inputdata = data[0].to(self.device)
                fake, latent_i, latent_o = self.netg(inputdata)
                print(latent_i.shape)
                # update netD
                optimizer_d.zero_grad()
                pred_real, feat_real = self.netd(inputdata)
                pred_fake, feat_fake = self.netd(fake.detach())
                err_d_real = l_bce(pred_real, real_label)
                err_d_fake = l_bce(pred_fake, fake_label)
                err_d = (err_d_real + err_d_fake) * 0.5
                err_d.backward()
                optimizer_d.step()

                # update netG
                optimizer_g.zero_grad()
                pred_real, feat_real = self.netd(inputdata)
                pred_fake, feat_fake = self.netd(fake)
                err_g_adv = opt.w_adv * l_adv(feat_fake, feat_real)
                err_g_con = opt.w_con * l_con(fake, inputdata)
                err_g_lat = opt.w_lat * l_enc(latent_o, latent_i)
                err_g = err_g_adv + err_g_con + err_g_lat
                err_g.backward()
                optimizer_g.step()

                # record loss
                running_loss_d += err_d.item()
                running_loss_g += err_g.item()
                if iternum % opt.loss_iter == 0:
                    # print('GLoss: {:.8f} DLoss: {:.8f}'
                    #       .format(running_loss_g / opt.loss_iter, running_loss_d / opt.loss_iter))
                    loss_d.append(running_loss_d / opt.loss_iter)
                    loss_g.append(running_loss_g / opt.loss_iter)
                    running_loss_d = 0
                    running_loss_g = 0

                if opt.save_train_images and i == 0:
                    train_img_dst = os.path.join(opt.outtrain_dir, 'images')
                    visualize.save_images(train_img_dst, epoch, inputdata,
                                          fake)
            print(">> Training model %s. Epoch %d/%d" %
                  (self.name, epoch + 1, opt.nepoch))

            if epoch % opt.eva_epoch == 0:
                performance = self.evaluate(epoch)
                if performance['AUC'] > best_auc:
                    best_auc = performance['AUC']
                    if opt.save_best_weight:
                        self.save_weights(epoch, is_best=True)
                # log performance
                now = time.strftime("%c")
                traintime = f'================ {now} ================\n'
                visualize.write_to_log_file(
                    os.path.join(opt.outclass_dir, 'auc.log'), traintime)
                visualize.log_current_performance(opt.outclass_dir,
                                                  performance, best_auc)
                print(performance)
        if opt.save_loss_curve:
            visualize.plot_loss_curve(opt.outclass_dir, 'loss_d', loss_d)
            visualize.plot_loss_curve(opt.outclass_dir, 'loss_g', loss_g)
        if opt.save_final_weight:
            self.save_weights(opt.nepoch, is_best=False)
        print(">> Training model %s.[Done]" % self.name)
예제 #5
0
    def evaluate(self, epoch):
        self.netd.eval()
        self.netg.eval()
        print(
            f">> Evaluating {self.name} on {self.opt.dataset} to detect {self.opt.abnormal_class}"
        )
        with torch.no_grad():
            # Create big error tensor for the test set.
            an_scores = torch.zeros(size=(len(
                self.dataloader.valid.dataset), ),
                                    dtype=torch.float32,
                                    device=self.device)
            gt_labels = torch.zeros(size=(len(
                self.dataloader.valid.dataset), ),
                                    dtype=torch.long,
                                    device=self.device)

            times = []
            for i, data in enumerate(self.dataloader.valid, 0):
                time_i = time.time()
                inputdata = data[0].to(self.device)
                label = data[1].to(self.device)
                fake, latent_i, latent_o = self.netg(inputdata)

                _, feat_real = self.netd(inputdata)
                _, feat_fake = self.netd(fake)
                error = torch.mean(torch.pow((latent_i - latent_o), 2), dim=1)
                time_o = time.time()

                an_scores[i * self.opt.batchsize:i * self.opt.batchsize +
                          error.size(0)] = error.reshape(error.size(0))
                gt_labels[i * self.opt.batchsize:i * self.opt.batchsize +
                          error.size(0)] = label.reshape(error.size(0))

                if self.opt.save_test_images and i == 0:
                    test_img_dst = os.path.join(self.opt.outfolder,
                                                self.opt.name,
                                                self.opt.abnormal_class,
                                                'test', 'images')
                    visualize.save_images(test_img_dst, epoch, inputdata, fake)

                if self.opt.visulize_feature and i == 0:
                    feature_img_dst = os.path.join(self.opt.outtrain_dir,
                                                   'features')
                    visualize.tsne_3D(
                        feature_img_dst, epoch, 'feature',
                        feat_real.reshape(feat_real.size(0), -1).cpu().numpy(),
                        label.reshape(label.size(0), -1).cpu().numpy())
                    visualize.tsne_2D(
                        feature_img_dst, epoch, 'feature',
                        feat_real.reshape(feat_real.size(0), -1).cpu().numpy(),
                        label.reshape(label.size(0), -1).cpu().numpy())

                times.append(time_o - time_i)

            times = np.array(times)
            times = np.mean(times[:100] * 1000)

            # Scale error vector between [0, 1]
            an_scores = (an_scores - torch.min(an_scores)) / (
                torch.max(an_scores) - torch.min(an_scores))
            auc = evaluate(gt_labels, an_scores, metric=self.opt.metric)
            performance = OrderedDict([('Avg Run Time (ms/batch)', times),
                                       ('AUC', auc)])
            return performance
예제 #6
0
    def train(self):
        opt = self.opt
        real_label = torch.ones(size=(opt.batchsize, ),
                                dtype=torch.float32,
                                device=self.device)
        fake_label = torch.zeros(size=(opt.batchsize, ),
                                 dtype=torch.float32,
                                 device=self.device)
        optimizer_de = optim.Adam(self.decoder.parameters(),
                                  lr=opt.lr,
                                  betas=(opt.beta1, 0.999))
        optimizer_d = optim.Adam(self.netd.parameters(),
                                 lr=opt.lr,
                                 betas=(opt.beta1, 0.999))
        optimizer_en = optim.Adam(self.encoder.parameters(),
                                  lr=opt.lr,
                                  betas=(opt.beta1, 0.999))
        l_bce = nn.BCELoss()

        if opt.load_best_weights or opt.load_final_weights:
            self.load_GAN_weights()

        print(
            f">> Training {self.name} on {opt.dataset} to detect {opt.abnormal_class}"
        )
        loss_de = []
        loss_d = []
        # train GAN
        for epoch in range(opt.nepoch):
            iternum = 0
            lossd = 0
            lossde = 0
            self.decoder.train()
            self.netd.train()
            for i, data in enumerate(
                    tqdm(self.dataloader.train,
                         leave=False,
                         total=len(self.dataloader.train),
                         ncols=80)):
                iternum = iternum + 1
                inputdata = data[0].to(self.device)
                z = torch.randn(inputdata.shape[0], opt.nz).to(self.device)
                z = z.unsqueeze(2).unsqueeze(3)
                fake_image = self.decoder(z)

                # update netd
                optimizer_d.zero_grad()
                pred_real, feat_real = self.netd(inputdata)
                pred_fake, feat_fake = self.netd(fake_image)
                err_d_real = l_bce(pred_real, real_label)
                err_d_fake = l_bce(pred_fake, fake_label)
                err_d = (err_d_real + err_d_fake) * 0.5
                err_d.backward()
                optimizer_d.step()

                # update netde
                optimizer_de.zero_grad()
                z = torch.randn(inputdata.shape[0], opt.nz).to(self.device)
                z = z.unsqueeze(2).unsqueeze(3)
                fake_image = self.decoder(z)
                pred_fake, feat_fake = self.netd(fake_image)
                err_g = l_bce(pred_fake, real_label)
                err_g.backward()
                optimizer_de.step()

                # record loss
                lossd += err_d.item()
                lossde += err_g.item()
                # record loss
                if iternum % opt.loss_iter == 0:
                    # print('GLoss: {:.8f} DLoss: {:.8f}'
                    #       .format(running_loss_g / opt.loss_iter, running_loss_d / opt.loss_iter))
                    loss_d.append(lossd / opt.loss_iter)
                    loss_de.append(lossde / opt.loss_iter)
                    lossd = 0
                    lossde = 0

                if opt.save_train_images and i == 0:
                    train_img_dst = os.path.join(opt.outtrain_dir, 'images')
                    visualize.save_images(train_img_dst, epoch, inputdata,
                                          fake_image)
            print(">> Training model %s. Epoch %d/%d" %
                  (self.name, epoch + 1, opt.nepoch))

        if opt.save_final_weight:
            self.save_GAN_weights(opt.nepoch)

        if opt.save_loss_curve:
            visualize.plot_loss_curve(opt.outclass_dir, 'loss_d', loss_d)
            visualize.plot_loss_curve(opt.outclass_dir, 'loss_de', loss_de)
        # train encoder
        print(
            f">> Training {self.name} on {opt.dataset} to detect {opt.abnormal_class}"
        )
        if opt.load_best_en_weights or opt.load_final_en_weights:
            self.load_encoder_weights()
        best_auc = 0
        loss_en = []
        self.netd.eval()
        self.decoder.eval()
        for epoch in range(opt.nenepoch):
            iternum = 0
            lossen = 0
            self.encoder.train()
            for i, data in enumerate(
                    tqdm(self.dataloader.train,
                         leave=False,
                         total=len(self.dataloader.train),
                         ncols=80)):
                iternum = iternum + 1
                inputdata = data[0].to(self.device)
                # update encoder
                optimizer_en.zero_grad()
                latent_z = self.encoder(inputdata).squeeze()
                latent_z = latent_z.unsqueeze(2).unsqueeze(3)
                fake_image = self.decoder(latent_z)
                pred_real, feat_real = self.netd(inputdata)
                pred_fake, feat_fake = self.netd(fake_image)
                k = 1.0
                error_en = 1 / (inputdata.view(inputdata.shape[0], -1).shape[1]) * l2_loss(inputdata, fake_image) \
                           + k * 1 / (feat_real.view(feat_real.shape[0], -1).shape[1]) * l2_loss(feat_real, feat_fake)
                error_en.backward()
                optimizer_en.step()

                # record loss
                lossen += error_en.item()
                # record loss
                if iternum % opt.loss_iter == 0:
                    # print('GLoss: {:.8f} DLoss: {:.8f}'
                    #       .format(running_loss_g / opt.loss_iter, running_loss_d / opt.loss_iter))
                    loss_en.append(lossen / opt.loss_iter)
                    lossen = 0

                if opt.save_train_images and i == 0:
                    train_img_dst = os.path.join(opt.outtrain_dir, 'images2')
                    visualize.save_images(train_img_dst, epoch, inputdata,
                                          fake_image)
            print(">> Training model %s. Epoch %d/%d" %
                  (self.name, epoch + 1, opt.nenepoch))

            if epoch % opt.eva_epoch == 0:
                performance = self.evaluate(epoch)
                if performance['AUC'] > best_auc:
                    best_auc = performance['AUC']
                    if opt.save_best_en_weight:
                        self.save_encoder_weights(epoch, is_best=True)
                # log performance
                now = time.strftime("%c")
                traintime = f'================ {now} ================\n'
                visualize.write_to_log_file(
                    os.path.join(opt.outclass_dir, 'auc.log'), traintime)
                visualize.log_current_performance(opt.outclass_dir,
                                                  performance, best_auc)
                print(performance)

        if opt.save_final_en_weight:
            self.save_encoder_weights(opt.nepoch)

        if opt.save_loss_curve:
            visualize.plot_loss_curve(opt.outclass_dir, 'loss_en', loss_en)
        print(">> Training model %s.[Done]" % self.name)
예제 #7
0
    def train(self):
        opt = self.opt
        real_label = torch.ones(size=(opt.batchsize, ),
                                dtype=torch.float32,
                                device=self.device)
        fake_label = torch.zeros(size=(opt.batchsize, ),
                                 dtype=torch.float32,
                                 device=self.device)
        optimizer_f = optim.Adam(self.netf.parameters(),
                                 lr=opt.lr,
                                 betas=(opt.beta1, 0.999))
        optimizer_de = optim.Adam(self.decoder.parameters(),
                                  lr=opt.lr,
                                  betas=(opt.beta1, 0.999))
        optimizer_en = optim.Adam(self.encoder.parameters(),
                                  lr=opt.lr,
                                  betas=(opt.beta1, 0.999))
        optimizer_d = optim.Adam(self.netd.parameters(),
                                 lr=opt.lr,
                                 betas=(opt.beta1, 0.999))
        l_bce = nn.BCELoss()
        l_adv = l2_loss
        l_con = nn.L1Loss()
        l_enc = l2_loss

        if opt.load_best_weights or opt.load_final_weights:
            self.load_weights()

        print(
            f">> Training {self.name} on {opt.dataset} to detect {opt.abnormal_class}"
        )
        best_auc = 0
        loss_eds = []
        loss_fgs = []
        loss_egs = []
        for epoch in range(opt.nepoch):
            iternum = 0
            lossed = 0.0
            lossfg = 0.0
            losseg = 0.0
            self.netf.train()
            self.decoder.train()
            self.encoder.train()
            self.netd.train()
            for i, data in enumerate(
                    tqdm(self.dataloader.train,
                         leave=False,
                         total=len(self.dataloader.train),
                         ncols=80)):
                iternum = iternum + 1
                data[0].requires_grad = True
                inputdata = data[0].to(self.device)
                z = torch.randn(inputdata.shape[0], opt.nz).to(self.device)
                latent_i = self.netf(z).unsqueeze(2).unsqueeze(3)
                fake_image = self.decoder(latent_i)
                latent_o = self.encoder(fake_image).squeeze()
                real_latent = self.encoder(inputdata).squeeze()
                pred_real = self.netd(real_latent)
                pred_fake = self.netd(latent_o)
                optimizer_en.zero_grad()
                optimizer_d.zero_grad()
                loss = loss_ed(pred_real, pred_fake)
                # loss = losses.discriminator_logistic_simple_gp(pred_fake, pred_real, inputdata)
                lossed += loss.item()
                loss.backward()
                optimizer_en.step()
                optimizer_d.step()

                z = torch.randn(inputdata.shape[0], opt.nz).to(self.device)
                latent_i = self.netf(z).unsqueeze(2).unsqueeze(3)
                fake_image = self.decoder(latent_i)
                latent_o = self.encoder(fake_image).squeeze()
                pred_fake = self.netd(latent_o)
                optimizer_f.zero_grad()
                optimizer_de.zero_grad()
                loss = loss_fg(pred_fake)
                # loss = losses.generator_logistic_non_saturating(pred_fake)
                lossfg += loss.item()
                loss.backward()
                optimizer_f.step()
                optimizer_de.step()

                z = torch.randn(inputdata.shape[0], opt.nz).to(self.device)
                latent_i = self.netf(z).unsqueeze(2).unsqueeze(3)
                fake_image = self.decoder(latent_i)
                latent_o = self.encoder(fake_image).squeeze()
                optimizer_en.zero_grad()
                optimizer_de.zero_grad()
                loss = l2_loss(latent_i, latent_o)
                # loss = losses.reconstruction(latent_i, latent_o)
                losseg += loss.item()
                loss.backward()
                optimizer_en.step()
                optimizer_de.step()

                # record loss
                if iternum % opt.loss_iter == 0:
                    # print('GLoss: {:.8f} DLoss: {:.8f}'
                    #       .format(running_loss_g / opt.loss_iter, running_loss_d / opt.loss_iter))
                    loss_eds.append(lossed / opt.loss_iter)
                    loss_fgs.append(lossfg / opt.loss_iter)
                    loss_egs.append(losseg / opt.loss_iter)
                    lossed = 0
                    lossfg = 0
                    losseg = 0

                if opt.save_train_images and i == 0:
                    train_img_dst = os.path.join(opt.outtrain_dir, 'images')
                    visualize.save_images(train_img_dst, epoch, inputdata,
                                          fake_image)
            print(">> Training model %s. Epoch %d/%d" %
                  (self.name, epoch + 1, opt.nepoch))

            # if epoch % opt.eva_epoch == 0:
            #     performance = self.evaluate(epoch)
            #     if performance['AUC'] > best_auc:
            #         best_auc = performance['AUC']
            #         if opt.save_best_weight:
            #             self.save_weights(epoch, is_best=True)
            #     # log performance
            #     now = time.strftime("%c")
            #     traintime = f'================ {now} ================\n'
            #     visualize.write_to_log_file(os.path.join(opt.outclass_dir, 'auc.log'), traintime)
            #     visualize.log_current_performance(opt.outclass_dir, performance, best_auc)
            #     print(performance)
        if opt.save_loss_curve:
            visualize.plot_loss_curve(opt.outclass_dir, 'loss_ed', loss_eds)
            visualize.plot_loss_curve(opt.outclass_dir, 'loss_fg', loss_fgs)
            visualize.plot_loss_curve(opt.outclass_dir, 'loss_eg', loss_egs)
        # if opt.save_final_weight:
        #     self.save_weights(opt.nepoch, is_best=False)
        print(">> Training model %s.[Done]" % self.name)