def testMutatingSegments(): verticalLine = Path() verticalLine.startingPoint = (13, 13) verticalLine.segments.append(Segment(Direction.UP, 5)) horizontalLine = Path() horizontalLine.startingPoint = (2, 2) horizontalLine.segments.append(Segment(Direction.RIGHT, 6)) trickyPath = Path() trickyPath.startingPoint = (4, 5) trickyPath.segments = [Segment(Direction.RIGHT, 1), Segment(Direction.UP, 1), Segment(Direction.RIGHT, 3), Segment(Direction.DOWN, 1)] entity = PopulationEntity() entity.paths = [verticalLine, horizontalLine, trickyPath] board = Board(16, 16) visualize(entity, board, 'C:\\Users\\Staszek\\PycharmProjects\\GeneticAlgorithmsPCB\\testresults\\testmutating-before.png') verticalLine.mutateSegment(0, 1) horizontalLine.mutateSegment(0, 1) trickyPath.mutateSegment(2, 1) visualize(entity, board, 'C:\\Users\\Staszek\\PycharmProjects\\GeneticAlgorithmsPCB\\testresults\\testmutating-after.png')
def run(self): if self.options.compute_metrics( ) or self.options.compute_derived_metrics( ) or self.options.normalize_results(): self._get_input_file_meta_info() if self.options.compute_metrics(): self._compute_metrics() else: self.metrics = self.results.fetch_most_recent() if self.options.compute_derived_metrics(): self._compute_derived_metrics() if self.options.store(): self._store_results() if self.options.normalize_results(): self._normalize_metrics() if self.options.show_table(): table = self.results._get_most_recent_table() print( pandas.read_sql_query( "SELECT * FROM '{}'".format(table), self.results.conn).to_string(index=False)) if self.options.show_graph(): visualizer.visualize(self.metrics)
def main(dataset): np_dataset = np.loadtxt(dataset) k = 10 accuracies = [] pruned_accuracies = [] agg_confusion_matrix = np.zeros((4, 4)) agg_pruned_confusion_matrix = np.zeros((4, 4)) # Generate training and test dataset arrays. training_sets, test_sets = generate_test_training(np_dataset, k) # Evaluation on pre-pruned tree for i in range(k): training_db = training_sets[i] test_db = test_sets[i] # Train trained_tree, depth = train(training_db, 1) # Evaluate (accuracy, confusion_matrix) = evaluate(test_db, trained_tree) agg_confusion_matrix += confusion_matrix accuracies.append(accuracy) # Calculate average accuracy agg_confusion_matrix /= k print(agg_confusion_matrix) calculate_measures(agg_confusion_matrix) average_accuracy = np.average(accuracies) # Tree pruning inner_training_sets, validation_sets = generate_test_training( training_sets, k - 1) # Evaluation on pruned tree for i in range(k): test_db = test_sets[i] for j in range(k - 1): training_db = inner_training_sets[j, i] validation_db = validation_sets[j, i] # Train trained_tree, depth = train(training_db, 1) # Evaluation (accuracy, confusion_matrix) = evaluate(validation_db, trained_tree) # Prune pruned_tree, pruned_depth = prune_tree(trained_tree, validation_db, accuracy) # Evaluate on now pruned tree (pruned_accuracy, pruned_confusion_matrix) = evaluate(test_db, pruned_tree) pruned_accuracies.append(pruned_accuracy) agg_pruned_confusion_matrix += pruned_confusion_matrix agg_pruned_confusion_matrix /= (k * (k - 1)) print(agg_pruned_confusion_matrix) calculate_measures(agg_pruned_confusion_matrix) avg_pruned_accuracy = np.average(pruned_accuracies) print("Average Accuracy: ", average_accuracy) print("Average Accuracy of Pruned Decision Tree: ", avg_pruned_accuracy) # Train on the entire dataset tree, depth = train(np_dataset) # Visualize this, saving it to an aptly named file visualize(tree, depth, dataset[:dataset.rfind('.')] + '.png')
def main(): """ Main function """ if len(sys.argv) == 1: # simple example coords = np.array([[1.0, 0, 0], [1.0, 1.0, 0], [1.5, 0, 0], [1.5, 0.5, 0], [1.5, 1.0, 0], [2.0, 0, 0], [2.0, 1.0, 0], [2.5, 0, 0], [2.5, 1.0, 0], [3.0, 0, 0], [3.0, 0.5, 0], [3.0, 1.0, 0], [3.5, 0.5, 0]]) #coords = np.array([ # [1,0,0], # [1.5,0,0], # [2,0,0], # [2.5,0,0], # [3,0,0] #]) contacts = deconstruct(coords, epsilon=0.51) rec_coords = apply_shrec3d(contacts) visualize([(coords, 'original points'), (rec_coords, 'reconstructed points')]) else: fname = sys.argv[1] contacts = np.loadtxt(fname) rec_coords = apply_shrec3d(contacts) np.save('%s.ptcld' % fname, rec_coords)
def test(data_path, label_path, valid_frame_path, vid=None, local=True): import matplotlib.pyplot as plt norm = 'default' if args.norm else 'none' loader = torch.utils.data.DataLoader( dataset=Feeder(data_path, label_path, valid_frame_path, normalization=norm), batch_size=64, shuffle=False, num_workers=2, ) if vid is not None: sample_name = loader.dataset.sample_name sample_id = [name.split('.')[0] for name in sample_name] index = sample_id.index(vid) data, label, frame_num = loader.dataset[index] data = np.transpose(np.reshape(data[0, :], (20, 3)), (1, 0)) # (3, 20) from visualizer import visualize if not local: import matplotlib.pyplot as plt plt.switch_backend('agg') visualize(data, False, './figures/{}{}.png'.format(vid, args.modality)) else: visualize(data, True)
def testGenRandomPopulation(): board: Board = loadFromFile('textTests/zad1.txt') population = generateRandomPopulation(10, board) for index, element in enumerate(population): visualize(element, board, f'C:\\Users\\Staszek\\PycharmProjects\\GeneticAlgorithmsPCB\\testresults\\randpop-{index}.png') print()
def run_csp(board): # CSP WITHOUT BACKTRACKING time_csp = time.time() board_csp, expanded_nodes_csp, path_csp = copy.deepcopy(board).solve(CSP()) time_csp = time.time() - time_csp print_result('CSP', expanded_nodes_csp, board_csp, time_csp) visualize(path_csp) draw_grid(path_csp)
def main(): start = time.time() board = Grid(Meta.board_height, Meta.board_width) fonts = Fonts(Meta.board_height) key = None run = True mistakes = 0 while run: clock.tick(FPS) play_time = time.time() - start for event in pygame.event.get(): if event.type == pygame.QUIT: run = False # If the mouse was clicked somewhere on board if event.type == pygame.MOUSEBUTTONDOWN: pos = pygame.mouse.get_pos() board.click(pos) # A key was pressed if event.type == pygame.KEYDOWN: if event.key == pygame.K_1: key = 1 elif event.key == pygame.K_2: key = 2 elif event.key == pygame.K_3: key = 3 elif event.key == pygame.K_4: key = 4 elif event.key == pygame.K_5: key = 5 elif event.key == pygame.K_6: key = 6 elif event.key == pygame.K_7: key = 7 elif event.key == pygame.K_8: key = 8 elif event.key == pygame.K_9: key = 9 else: key = None board.place(key) if board.isFinished(): print("Game Over") run = False # Delete the incorrect selected entry if event.key == pygame.K_DELETE: board.delete() # Visualize Backtracking algorithm if event.key == pygame.K_SPACE: visualize(board, win, fonts, play_time, clock) run = False board.draw(win, fonts, play_time)
def test_visualization(): wins_and_losses = [] for i in range(100): wins_and_losses.append( test_iteration(iterations=3000, summary=False, total=False)) wins_data = [(idx, num[0]) for idx, num in enumerate(wins_and_losses)] losses_data = [(idx, num[1]) for idx, num in enumerate(wins_and_losses)] visualize(wins_data, losses_data)
def run_hill(board): # Hill Climbing time_hill = time.time() board_hill, explored_nodes_hill, path_hill = copy.deepcopy(board).solve( HillClimb()) time_hill = time.time() - time_hill print_result('HillClimb', explored_nodes_hill, board_hill, time_hill) visualize(path_hill) draw_grid(path_hill)
def crawl(): """ Main method for executing a report. Calls other modules to provide a result :return: void """ crawler = Crawler() run(crawler) authors, articles = get(crawler.get_authors(), crawler.get_articles()) save(authors, articles) visualize(authors, articles)
def main(): """Main function.""" # Print program info print('AlfheimDataset features program.') # Specify the list of files to read files = [ '2013-11-03_tromso_stromsgodset_first_ONLY_ONE_MINUTE.csv' ] #'2013-11-03_tromso_stromsgodset_first.csv']#, '2013-11-03_tromso_stromsgodset_second.csv'] # Initializing list of frames frames = [] # Reading data from files for file in files: data = load_from(file) frames.append(data) # Merging data from all files data = pandas.concat(frames) if data is None: return None # Extract features [alfheim_mean_speed, alfheim_mean_distances] = extract_features_from(data) # Features retrieved from game estraction # [FEATURES] The mean velocity of the players is: 3.8 m/s. # [FEATURES] The mean distance traveled by the players is: 8.4 Km. # [FEATURES] The mean distance traveled with low-intensity by the players is: 2.8 Km. # [FEATURES] The mean distance traveled with high-intensity by the players is: 5.6 Km. # Mean speed (m/s), #game_mean_speed = [3.8] # Mean distance (m/s), mean distance at low speed (m/s), mean distance at low speed (m/s) #game_mean_distances = [8.4, 2.8, 5.6] # FOR ONLY ONE MINUTE OF GAME # Mean speed (m/s), game_mean_speed = [3.7] # Mean distance (m/s), mean distance at low speed (m/s), mean distance at low speed (m/s) game_mean_distances = [0.211, 0.064, 0.147] y_max = 7 labels = ('Speed (m/s)', '') visualizer.visualize(game_mean_speed, alfheim_mean_speed, labels, y_max) y_max = 1 labels = ('Distance (Km)', 'Low speed distance (Km)', 'High speed distance (Km)') visualizer.visualize(game_mean_distances, alfheim_mean_distances, labels, y_max)
def run_solution(lib, dataset, max_time, visual=False): res = {'posns':[], 'passed':False} def helper(res): res['posns']=lib.find_solution(dataset) res['passed']=True t = threading.Thread(target=helper,args=(res,)) t.start() t.join(max_time) if visual:visualizer.visualize(dataset,res['posns']) return res
def tryRandomSearch(): board = loadFromFile('textTests/zad1.txt') result = RandomSearch.RandomSearch(board, 10, printOutput=True) if result is None: print("Could not find a solution") else: print("Found a solution:") visualize( result, board, f'C:\\Users\\Staszek\\PycharmProjects\\GeneticAlgorithmsPCB\\testresults\\randomsearch.png' ) for path in result.paths: print(path)
async def post(self): db = self.settings['db'] try: # parse request body data = tornado.escape.json_decode(self.request.body) # query task dataset from database pipeline = data['pipeline'].lower() tasks = await db.task_query_pipeline(pipeline) tasks = [task['trace'] for task in tasks] tasks_process = [ task for task in tasks if task['process'] == data['process'] ] df = pd.DataFrame(tasks_process) # prepare visualizer args args = data['args'] args['plot_name'] = str(bson.ObjectId()) if args['selectors'] == '': args['selectors'] = [] else: args['selectors'] = args['selectors'].split(' ') # append columns from merge process if specified if 'merge_process' in args: # load merge data tasks_merge = [ task for task in tasks if task['process'] == args['merge_process'] ] df_merge = pd.DataFrame(tasks_merge) # remove duplicate columns dupe_columns = set(df.columns).intersection(df_merge.columns) dupe_columns.remove(args['merge_key']) df_merge.drop(columns=dupe_columns, inplace=True) # append merge columns to data df = df.merge(df_merge, on=args['merge_key'], how='left', copy=False) # create visualization outfile = Visualizer.visualize(df, args) # encode image file into base64 with open(outfile, 'rb') as f: image_data = base64.b64encode(f.read()).decode('utf-8') self.set_status(200) self.set_header('content-type', 'application/json') self.write(tornado.escape.json_encode(image_data)) except Exception as e: self.set_status(404) self.write(message(404, 'Failed to visualize data')) raise e
def solve(self): dim = int(input('Enter the dimension of the maze: ')) p = float( input( 'Enter the probability at which the blocks will be generated: ' )) self.init_maze(dim, p) heu = input( 'Enter type of heuristic (\'m\' for manhattan/ \'e\' for euclidean): ' ) self.fringe.put( (self.start.f, 0, self.start)) #adding start cell to the fringe self.max_frig_size = self.fringe.qsize() self.cost[self.start] = 0 i = 1 while not self.fringe.empty(): f, x, cell = self.fringe.get() self.visited.add( cell) #add cells to visited set as and when they're visited if cell is self.end: #if popped cell is target cell, then path has been found self.finish = True self.max_nodes = i return self.display_path() #return self.finish adj_cells = self.get_adjacent_cells(cell) for adj_cell in adj_cells: if adj_cell.open and adj_cell not in self.visited: c = self.cost[cell] + 10 #adding g score if adj_cell not in self.cost or self.cost[adj_cell] > c: #if cell hasn't been seen before or has worse cost than the new cost self.cost[adj_cell] = c #update to new cost adj_cell.parent = cell f = c + self.get_h(adj_cell, heu) #get f value self.fringe.put( (f, i, adj_cell)) #push in fringe with f as priority self.max_frig_size = self.fringe.qsize() i += 1 if (self.finish == False): viz.visualize(self.a) print('No Solution!')
def remove_blocks(maze, q): viz.visualize(maze) dim = maze.shape[0] num_blocks = (maze == SearchUtils.CELL_BLOCKED ).sum() # Fetch number of blocks in maze to_remove = round(num_blocks * q) # Compute number of blocks to remove while to_remove >= 1: for row in range(dim): for col in range(dim): if maze[row][ col] == SearchUtils.CELL_BLOCKED and to_remove >= 1: # if num of blocks is less than 1, then remove blocks rand_prob = random.uniform(0, 1) if rand_prob < q: maze[row][col] = SearchUtils.CELL_OPEN to_remove = to_remove - 1 viz.visualize(maze) return maze
def main(args): cfg = setup(args) show = True register_openlogo(cfg.DATASETS.TRAIN[0], "datasets/data/openlogo", "trainval", "supervised_imageset") register_openlogo(cfg.DATASETS.TEST[0], "datasets/data/openlogo", "test", "supervised_imageset") trainer = DefaultTrainer(cfg) evaluator = OpenLogoDetectionEvaluator(cfg.DATASETS.TEST[0]) if args.eval_only: model = trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume) if show: visualize(cfg, amount=20) res = trainer.test(cfg, model, evaluators=[evaluator]) if comm.is_main_process(): verify_results(cfg, res) if cfg.TEST.AUG.ENABLED: res.update(trainer.test_with_TTA(cfg, model)) return res trainer = DefaultTrainer(cfg) trainer.resume_or_load(resume=args.resume) if cfg.TEST.AUG.ENABLED: trainer.register_hooks([ hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model)) ]) return trainer.train()
def main(): original_data = pd.read_csv(r'../data/data_with_readme_topics.csv') data = preprocess(original_data) data = normalize(data) # visualizer.save_graphs(data, numeric_columns) # Determine clusters n_clusters = 4 print(data.head()) test_predictions = clusterize(data, n_clusters) # Reduce dimensionality for visualizing clusters test_reduced = reduce_dimensionality(data) # Add column for cluster predictions test_reduced['cluster'] = pd.Series(test_predictions) visualizer.visualize(test_reduced, n_clusters) get_statistics(original_data, test_predictions)
def main(): """ Main function """ if len(sys.argv) == 1: # simple example coords = np.array([ [1.0,0,0], [1.0,1.0,0], [1.5,0,0], [1.5,0.5,0], [1.5,1.0,0], [2.0,0,0], [2.0,1.0,0], [2.5,0,0], [2.5,1.0,0], [3.0,0,0], [3.0,0.5,0], [3.0,1.0,0], [3.5,0.5,0] ]) #coords = np.array([ # [1,0,0], # [1.5,0,0], # [2,0,0], # [2.5,0,0], # [3,0,0] #]) contacts = deconstruct(coords, epsilon=0.51) rec_coords = apply_shrec3d(contacts) visualize([ (coords, 'original points'), (rec_coords, 'reconstructed points') ]) else: fname = sys.argv[1] contacts = np.loadtxt(fname) rec_coords = apply_shrec3d(contacts) np.save('%s.ptcld' % fname, rec_coords)
def plot(): if(request.get_json()['accnum']!=None and request.get_json()['gtype']!=None): details={'acnum':request.get_json()['accnum'],'gtype':request.get_json()['gtype'],'genes':request.get_json()['genes'],'sample':request.get_json()['sample'],'number':request.get_json()['number']} #obtain the javascript script, HTML DOM element and description corresponding to the plot script,div,description=visualize(details) #assemble to be sent as a json object data={ 'div':div, 'description':description, 'script':script } print(data) #write the new script in the file in the client assets folder fwrite(script) return jsonify(data) else: result={"error:Invalid Accession Number"} return jsonify(result)
def testCrossover(): board = Board(16, 16) verticalLine = Path() verticalLine.startingPoint = (13, 13) verticalLine.segments.append(Segment(Direction.UP, 5)) horizontalLine = Path() horizontalLine.startingPoint = (2, 2) horizontalLine.segments.append(Segment(Direction.RIGHT, 6)) entity = PopulationEntity() entity.paths = [verticalLine, horizontalLine] verticalLine.mutateSegment(0, 1) horizontalLine.mutateSegment(0, 1) visualize(entity, board, 'C:\\Users\\Staszek\\PycharmProjects\\GeneticAlgorithmsPCB\\testresults\\crossover-entity1.png') verticalLine2 = Path() verticalLine2.startingPoint = (13, 13) verticalLine2.segments.append(Segment(Direction.UP, 5)) horizontalLine2 = Path() horizontalLine2.startingPoint = (2, 2) horizontalLine2.segments.append(Segment(Direction.RIGHT, 6)) entity2 = PopulationEntity() entity2.paths = [verticalLine2, horizontalLine2] visualize(entity2, board, 'C:\\Users\\Staszek\\PycharmProjects\\GeneticAlgorithmsPCB\\testresults\\crossover-entity2.png') resultEntity = crossover(entity, entity2, 0.5) visualize(resultEntity, board, 'C:\\Users\\Staszek\\PycharmProjects\\GeneticAlgorithmsPCB\\testresults\\crossover-child.png')
strategy = strategies[int(strategy_choice) - 1] portfolio = OptimizedGreedyPortfolio(bars, events, datetime.date( 2017, 1, 1)) if portfolio_choice == 2 else NaiveGreedyPortfolio( bars, events, datetime.date(2017, 1, 1)) broker = SimulatedExecutionHandler(events, symbols) while True: if bars.continue_backtest: bars.update_bars() else: print('\n'.join([ '{}: {}'.format(column, value) for column, value in portfolio.output_summary_stats() ])) export_all(bars, portfolio, broker, portfolio.simulation) visualize(bars.latest_symbol_data, portfolio.all_holdings, broker.history, portfolio.simulation) break while True: try: event = events.get(False) except queue.Empty: break else: if event is not None: if event.type == 'MARKET': strategy.calculate_signals(event) portfolio.update_time_index(event) elif event.type == 'SIGNAL': portfolio.update_signal(event) print(event)
import numpy as np import queue import visualizer as viz import SearchUtils # Generate Maze test_dim = 50 maze = SearchUtils.generate_maze(test_dim, 0.2) # Show Maze before solving viz.visualize(maze) # Perform DFS Search print( "-----------------------------\nDFS Search:\n-----------------------------" ) result = SearchUtils.dfs_search(maze) if result['status']: print("num moves: %d" % result['num_moves']) print("maximum fringe size: %d" % result['max_fringe_size']) print("path length: ", len(result['path'])) print("path: ", result['path']) viz.visualize(maze, result['path']) else: print("num moves: %d" % result['num_moves']) print("Maze is not solvable.") # Perform BFS Search print( "\n\n-----------------------------\nBFS Search:\n-----------------------------" )
# sg ({0, 1}, optional) – Training algorithm: 1 for skip-gram; otherwise CBOW. settings = {'workers': 3, 'min_count': 1, 'sg': 1} model5 = Word2Vec(sentences, window=5, **settings) model20 = Word2Vec(sentences, window=20, **settings) model5.save(model_window_5_file) model20.save(model_window_20_file) # Sample search sample_queries = ['one', 'flaw', 'reason'] for query in sample_queries: results = model5.most_similar(query)[:3] print('Results for query', query, ':', results) # Visualization """ visualize(model5, 'Study in scarlett, window=5, no split', 'model5.png') visualize(model5, 'Study in scarlett, window=20, no split', 'model20.png') """ # Precision@K k = 30 search_word = 'holmes' expectations = [ 'sherlock', 'asked', 'remarked', 'mr', 'observed', 'seemed', 'followed' ] precision_at_k(model5, search_word, None, k, expectations) # Experimenting with different window size window_range = [i for i in range(5, 11)] precision_per_window = []
def analyze_job(entry, logscan, is_being_removed, live): tprfile = _filename(entry, "tpr") xtcfile = _filename(entry, "xtc") xvgfile = _filename(entry, "xvg") resname = entry.attr[ATTR.RESNAME] dt = float(entry.attr[ATTR.LOG_DELTA]) frames_per_ns = int(1000 / dt) nstep = int(entry.attr[ATTR.LOG_NSTEP]) last = int(entry.attr[ATTR.OLD_STEPS]) / nstep now = int(entry.attr[ATTR.NUM_STEPS]) / nstep delta = now - last nanoseconds = int(now / frames_per_ns) # how many ns have passed? end = nanoseconds * frames_per_ns # how many frames for this many ns? # this rounds the current end value to the nearest ns if ATTR.VIS_MARK not in entry.attr: entry.attr[ATTR.VIS_MARK] = "0" print( ( "Analysis, step numbers: dt|{0:0.2f} fpn|{1:0.0f} log#steps|" + "{2:0.0f} last|{3:0.0f} now|{4:0.0f} ns|{5:0.0f} vis|{6:0.0f}" + " end|{7:0.0f}" ).format(dt, frames_per_ns, nstep, last, now, nanoseconds, int(entry.attr[ATTR.VIS_MARK]), end) ) message1 = None message2 = None if "Count" in logscan.log_entries: data = logscan.log_numbers["Count"] count = [] for number in data: count.append(int(number)) if len(count) > 0: count = numpy.array(count, numpy.float32) message1 = "[" + numpy.array2string(count, precision=0, separator=", ") + "]" avg = numpy.average(count) count /= avg count /= numpy.min(count) message2 = "[" + numpy.array2string(count, precision=1, separator=", ") + "]" if message1 is not None: print("Current number of samples:") print(message1) print("Current ratio of samples:") print(message2) if delta <= 0: print("Entry " + entry.jobname + " appears to have made no progress") print("Old: {0}, New: {1}, Delta: {2}".format(last, now, delta)) if (int(entry.attr[ATTR.VIS_MARK]) < end) or is_being_removed: workdir = os.path.join("daemon-vis", "") fldrname = os.path.basename(os.path.dirname(xtcfile)) newfldr = os.path.join(workdir, fldrname, "") if not os.path.exists(workdir): if live: os.mkdir(workdir) else: print("DRYRUN: Would create folder " + workdir) if not os.path.exists(newfldr): if live: os.mkdir(newfldr) else: print("DRYRUN: Would create folder " + newfldr) for fname in [tprfile, xtcfile, xvgfile]: cmd = "cp " + fname + " " + newfldr if live: print(cmd) os.system(cmd) else: print("DRYRUN: Would " + cmd) tpr2 = os.path.join(newfldr, os.path.basename(tprfile)) xtc2 = os.path.join(newfldr, os.path.basename(xtcfile)) xvg2 = os.path.join(newfldr, os.path.basename(xvgfile)) start = int(entry.attr[ATTR.VIS_MARK]) if is_being_removed: end = now length = end - start if live: visualizer.visualize( tpr2, xtc2, xvg2, resname, nstart=start, nlength=length, doCenter=True, doVMD=True, timedelta=dt ) else: print("DRYRUN: Would make a call to visualizer to generate vmd" + " instructions using " + xtc2) entry.attr[ATTR.VIS_MARK] = str(end) else: print("Waiting for a nanosecond of simulation to pass before" + " visualizing.")
n = int(input("Enter number of countries: ")) for i in range(n): name, allocation, incoming = input( "Country Data ('Name Max_Alloc Incoming_Connections'): ").split( ' ') total += int(allocation) nodes[name] = Node(name) nodes[source].addEdge(name, int(incoming)) nodes[name].addEdge(dest, int(allocation)) k = input("Enter number of edges: ") print("Enter <source> <target> <capacity>: ") for i in range(int(k)): line = input("") line = line.split(' ') if (len(line) == 3): nodes[line[0]].addEdge(line[1], int(line[2])) # Copy nodes before_nodes = copy.deepcopy(nodes) # Dinic's algorithm flow = dinic(source, dest, nodes) print("The number of servers allocated statically: {}".format(flow)) print("The number of servers allocated dynamically: {}".format(total - flow)) # Save the graph for visualization visualize(before_nodes, nodes, "output/problem.png", "output/solution.png") except: print("Bad Input!")
workers=TILER_WORKERS, tile_processor_queue=tile_processor_pool.get_queue()) tiler.run() results = tile_processor_pool.gather_results() print(json.dumps({'tilingComplete': args.slidepath})) total_points_found, hpf_centers, hpf_points = find_hpfs(results) hpfs = list(zip(hpf_centers, hpf_points)) basename = os.path.basename(args.slidepath) with OpenSlide(args.slidepath) as slide: hpf_data = visualize(slide, hpf_centers, hpf_points, dir='.', basename=basename) elapsed = time.time() - start tiler.cleanup() shutil.rmtree(TMP_DIR) print( json.dumps({ 'processingComplete': args.slidepath, 'elapsedTime': time.strftime("%H:%M:%S", time.gmtime(elapsed)), 'eosinophilCount':
def loop(i): for j in range(vis_steps): update_func(k, curr_alpha=alpha_stepper(i * vis_steps + j), curr_diameter=diameter_stepper(i * vis_steps + j)) visualize(k, points, lines_collection) return points, lines_collection
# forward evaluation (loop over batches) loss_testing = 0. for bb in range(args.batch_size): x0 = network.initialize(input_data[bb:bb+1,...].to(device), device=device) xN_test, _ = evaluate(network.network, x0, testFlag = True, device = device) loss_tmp = loss_func(output_data[bb:bb+1,...].to(device),xN_test) with torch.no_grad(): loss_testing += loss_tmp.cpu().numpy() # tensorboard writer if args.tensorboard: # visualizing with torch.no_grad(): fig = visualizer.visualize(network.grad.C.data.cpu().numpy(), metadata) os.system('mkdir -p ' + exp_dir + '/tmp/') img_file_path = exp_dir + '/tmp/leds_{0:4d}.png'.format(ii) fig.savefig(img_file_path, transparent=True, dpi=150) plt.close() led_img = mpimg.imread(img_file_path)[...,:3] # writing to tensorboard writer.add_scalar('Loss/test.py', loss_testing/args.batch_size, ii) writer.add_scalar('Loss/train', loss_training/args.batch_size, ii) writer.add_image('Visual/leds', led_img, ii, dataformats='HWC') # saving checkpoints saveDict = {'model_state_dict':network.network.state_dict(),
import numpy class Field: def __init__(self, filename=None): if filename: self.data = numpy.array( [map(lambda x: int(x) * 255, line.rstrip("\n")) for line in open(filename) if len(line) > 1]) print self.data if __name__ == "__main__": import visualizer fieldObj = Field("test01.fld") visualizer.visualize((10, 10), None, None, None, fieldObj) visualizer.mainloop()
from visualizer import visualize from PIL import Image import numpy as np from utils import plot_confusion_matrix import matplotlib.pyplot as plt ''' imagePath = '.\\predict\\test1.jpg' maskPath = '.\\predict\\mask1.png' prediPath = '.\\predict\\predict1.png' imageBase = Image.open(imagePath).convert('RGB') imageBase = imageBase.resize(size=(256, 256)) mask = Image.open(maskPath) mask = mask.resize(size=(256, 256)) visualize(imageBase, mask) ''' matrix_data = np.array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) plot_confusion_matrix(cm=matrix_data, normalize=True, target_names=['Background', 'Carry'], title='Confusion Matrix', cmap=plt.cm.Blues)
def main(): audio = "DTTM.ogg" features = ads.split(audio, SIGMA) vis.visualize(features, THEME_GREEN, IMAGE_SIZE)
memory.push(state, action, next_state, reward) joint_state = joint_next_state #with open("array.txt", "wb") as f: # f.write("%s\n" % np.array(temp_state.cpu())) # % #f.write('\n') if len(memory) > args.batch_size * 5: for _ in range(args.updates_per_step): transitions = memory.sample(args.batch_size) batch = Transition(*zip(*transitions)) #agent.update_parameters_dpp(batch) # todo: need to see how update_parameters_dpp is different from other agent.update_parameters(batch) #path_reward = calc_dpp_path(env.rover_path, poi_vals, env.poi_pos) # calculate D++ reward for the entire trajectory #if i_episode % args.test_frequency == 0: if i_episode % 10 == 0: #env.render() tracker.update([episode_reward], i_episode) #print(i_episode, episode_reward/args.num_timesteps) print( 'Episode: {}, noise: {:.5f}, reward: {:.5f}, average reward: {:.5f}' .format(i_episode, ounoise.scale, float(episode_reward), float(episode_reward / args.num_timesteps))) ###### once the training is over, test the policies ############### if args.visualization: visualize(env, episode_reward) input("Press Enter to continue...")
import visualizer import stochastic def getdata(): parabolas = [] n = int(input()) for i in range(n): a, move_x, move_y, rotation = map(float, input().split()) p = Parabola(a, move_x, move_y, rotation) parabolas.append(p) return parabolas def test(par): p = (5, 5) p1 = par.transform(p[0], p[1]) print(p1) p2 = par.back_transform(p1[0], p1[1]) print(p2) if __name__ == '__main__': parabolas = getdata() test(parabolas[0]) visualizer.visualize(parabolas) print(stochastic.area(parabolas, -10, 10, -10, 10)) print( stochastic.integrate(lambda x, y: x**2 * y**2, parabolas, -10, 10, -10, 10))