def add_text(text, pos, angle=0, fontName=None, fontSize=9, color='k', bgcolor=None, axes=None): ''' Adds a text in the world space. Returns the Text object. Parameters: text - String. The text of the label pos - Tuple with two or three numbers. The (x,y,z) position of the text in world space. angle - Float or int. The rotation of the label in degrees. fontname- String. Either 'mono', 'sans' or 'serif'. fontSize- Int. Size of the text. Default 9. color - A 3-tuple or a character in 'rgbycmkw', etc that defines text color. Default 'k' (black). bgcolor - Background color. See color. Default None. axes - Axes wherein the label is placed. If None then the current axes is chosen. ''' if axes is None: axes = vv.gca() text = vv.Text(axes, text, *pos, fontName=fontName, fontSize=fontSize, color=color) text.bgcolor = bgcolor text.textAngle = angle return text
def putText(self, figureName, text, pos=(0, 0), size=10, color=(255, 255, 255), font='sans'): ''' Fonts: 'mono', 'sans' or 'serif' Color: Can be character (e.g. 'r', 'g', 'k') or 3-element tuple Notes: *This draws text onto the canvas and not the image. *You can use symbols (e.g. \leftarrow) and greek letters (e.g. \alpha, \omega,...) *Bold, italics, superscript, and subscript: \b{Text}, \i{Text}, \sup^{Text}, \sub_{Text} See here for examples and formatting: *http://code.google.com/p/visvis/wiki/example_text *http://code.google.com/p/visvis/wiki/Text ''' # embed() win = self._getWindow(figureName) win['canvas'].GetFigure().MakeCurrent() win['text'].append( vv.Text(win['canvas'].GetAxes(), text=text, x=pos[0], y=pos[1], fontSize=size, fontName=font, color=color))
def plot_reference_sphere(theta=0, phi=0, isometric=True, ax=None, azimuth=None, elevation=None, degrees=True, labels=True, light_ambient=.6, zoom=1.4, arrow_color=(.25, .95, .8), close_figure=False): if azimuth is None: azimuth = DEFAULT_AZIMUTH if elevation is None: elevation = DEFAULT_ELEVATION import visvis as vv if ax is None: app = vv.use() fig = vv.figure() ax = vv.subplot(111) else: app = None fig = ax.GetFigure() ax.axis.visible = 0 ax.axis.xLabel = 'x' ax.axis.yLabel = 'y' ax.axis.zLabel = 'z' # coordinate system length = 1.4 cyl_diameter = .05 for i in range(3): direction = np.zeros((3, )) direction[i] = 1 cyl = vv.solidCylinder(translation=(0, 0, 0), scaling=(cyl_diameter, cyl_diameter, length), direction=tuple(direction), axesAdjust=False, axes=ax) cyl.faceColor = (.75, .75, .75) translation = np.zeros((3, )) translation[i] = length cone = vv.solidCone(translation=tuple(translation), scaling=(.1, .1, .2), direction=tuple(direction), axesAdjust=False, axes=ax) cone.faceColor = (.75, .75, .75) # example direction length = 1 shrink = .825 direction = sph2cart(1, theta, phi, degrees=degrees).ravel() cyl = vv.solidCylinder(translation=(0, 0, 0), scaling=(.05, .05, shrink * length), direction=tuple(direction), axesAdjust=False, axes=ax) cyl.faceColor = arrow_color translation = direction * shrink cone = vv.solidCone(translation=tuple(translation), scaling=(.1, .1, .2), direction=tuple(direction), axesAdjust=False, axes=ax) cone.faceColor = arrow_color # indicate unit sphere sphere = vv.solidSphere((0, 0, 0), N=100, M=100) sphere.faceColor = (.5, .5, .5, .25) # some lines on sphere indicating main axes phi = np.linspace(0, 2 * np.pi, 100) theta = np.ones_like(phi) * np.pi / 2. r = np.ones_like(phi) xyz = sph2cart(r, theta, phi, degrees=False) vv.plot(xyz[:, 0], xyz[:, 1], xyz[:, 2], lw=1, lc=(.5, .5, .5), ls="-", mc='b', axesAdjust=False, axes=ax) theta = np.linspace(-np.pi, np.pi, 100) phi = np.ones_like(theta) * 0 r = np.ones_like(phi) xyz = sph2cart(r, theta, phi, degrees=False) vv.plot(xyz[:, 0], xyz[:, 1], xyz[:, 2], lw=1, lc=(.5, .5, .5), ls="-", mc='b', axesAdjust=False, axes=ax) theta = np.linspace(-np.pi, np.pi, 100) phi = np.ones_like(theta) * np.pi / 2. r = np.ones_like(phi) xyz = sph2cart(r, theta, phi, degrees=False) vv.plot(xyz[:, 0], xyz[:, 1], xyz[:, 2], lw=1, lc=(.5, .5, .5), ls="-", mc='b', axesAdjust=False, axes=ax) # add pitch and roll axes aa = np.deg2rad(np.linspace(45, 315, 100) - 90) r = .25 + .025 d = 1.25 + .05 color = (.25, .25, .25) # pitch rotation (in x/z plane, i.e. around y-axis) xx = r * np.cos(aa) zz = r * np.sin(aa) yy = d * np.ones_like(xx) vv.plot(xx, yy, zz, lw=5, lc=color, ls="-", axesAdjust=False, axes=ax) translation = (xx[0], yy[0], zz[0]) direction = (xx[0] - xx[1], yy[0] - yy[1], zz[0] - zz[1]) cone = vv.solidCone(translation=translation, scaling=(.05, .05, .1), direction=direction, axesAdjust=False, axes=ax) cone.faceColor = color if labels: vv.Text(ax, 'Pitch', x=0, y=1.25 * d, z=.25, fontSize=28, color=color) # roll rotation (in y/z plane, i.e. around x-axis) yy = r * np.cos(aa) zz = r * np.sin(aa) xx = d * np.ones_like(xx) vv.plot(xx, yy, zz, lw=5, lc=color, ls="-", axesAdjust=False, axes=ax) translation = (xx[-1], yy[-1], zz[-1]) direction = (xx[-1] - xx[-2], yy[-1] - yy[-2], zz[-1] - zz[-2]) cone = vv.solidCone(translation=translation, scaling=(.05, .05, .1), direction=direction, axesAdjust=False, axes=ax) cone.faceColor = color if labels: vv.Text(ax, 'Roll', x=1.25 * d, y=-.8, z=0, fontSize=28, color=color) # set camera view zoom_ = vv.view()['zoom'] if isometric: vv.view(dict(azimuth=90 + ISO_AZIMUTH, elevation=ISO_ELEVATION), zoom=zoom * zoom_, axes=ax) else: vv.view(dict(azimuth=90 + azimuth, elevation=elevation), zoom=zoom * zoom_, _axes=ax) ax.light0.ambient = light_ambient ax.light0.specular = .5 fig.DrawNow() if app is not None: app.ProcessEvents() img = vv.screenshot(None, ob=ax, sf=2, bg=None, format=None) if close_figure: vv.close(fig) fig = None return fig, img
def plot_density_sphere(xyz_centers, H, ax=None, method='hist', azimuth=None, elevation=None, backend='visvis', oversample=1, smoothing=None, zoom=1.7, cmap='jet', scaling='log', log_offset=-.1, clim=None, isometric=False, light_ambient=.6, light_specular=.5, avg_direction=None, pitch_label=True, roll_label=True, pitch_arrow=True, roll_arrow=True, arrow_color=(.25, .95, .8), close_figure=False): if azimuth is None: azimuth = DEFAULT_AZIMUTH if elevation is None: elevation = DEFAULT_ELEVATION scaling = scaling.lower() if scaling.startswith('log'): H = H / float(H.sum()) v = H > 0 if scaling == 'log': H[v] = np.log(H[v]) elif scaling == 'log2': H[v] = np.log2(H[v]) H[~v] = H[v].min() + log_offset if smoothing is not None and smoothing > 1: x = np.linspace(-3., 3., smoothing) xx, yy = np.meshgrid(x, x) G = np.exp((-xx**2 - yy**2)) H = signal.convolve2d(H, G / G.sum(), mode='same', boundary='wrap') if backend in ['mpl', 'matplotlib']: if ax is None: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') from matplotlib.colors import LightSource ls = LightSource(azdeg=315, altdeg=45) cm = getattr(plt.cm, cmap) colors = ls.shade(H, cmap=cm, blend_mode='soft', vert_exag=1) ax.plot_surface(xyz_centers[:, 0].reshape(H), xyz_centers[:, 1].reshape(H), xyz_centers[:, 2].reshape(H), cstride=1, rstride=1, facecolors=colors, linewidth=0, antialiased=False, shade=False) # add arrows in front of sphere import mousecam_helpers as helpers arrow_props = dict(arrowstyle='simple', mutation_scale=15, mutation_aspect=None, linewidth=.5, facecolor=3 * [.75], edgecolor=3 * [.1]) length = .6 arr = helpers.Arrow3D((1, 1 + length), (0, 0), (0, 0), **arrow_props) ax.add_artist(arr) arr = helpers.Arrow3D((0, 0), (1, 1 + length), (0, 0), **arrow_props) ax.add_artist(arr) arr = helpers.Arrow3D((0, 0), (0, 0), (1, 1 + length), **arrow_props) ax.add_artist(arr) extents = 3 * [[-.6, .6]] ax.auto_scale_xyz(*extents) ax.set_aspect('equal') ax.axis('off') ax.view_init(elev=elevation, azim=360 - azimuth) elif backend in ['mayavi', 'mlab']: from mayavi import mlab fig = mlab.figure(bgcolor=(1, 1, 1), size=(1000, 1000)) fig.scene.parallel_projection = True mlab.mesh(xyz_centers[:, 0].reshape(H.shape), xyz_centers[:, 1].reshape(H.shape), xyz_centers[:, 2].reshape(H.shape), scalars=H, colormap='jet') from tvtk.tools import visual visual.set_viewer(fig) arrow_kw = dict(color=(.75, .75, .75), length_cone=.1, radius_cone=.05, radius_shaft=.025) Arrow3D(0, 0, 0, 1.4, 0, 0, **arrow_kw) Arrow3D(0, 0, 0, 0, 1.4, 0, **arrow_kw) Arrow3D(0, 0, 0, 0, 0, 1.4, **arrow_kw) if isometric: fig.scene.isometric_view() else: mlab.view(azimuth=-azimuth, elevation=elevation, figure=fig) fig.scene.camera.zoom(zoom) ax = mlab.screenshot(figure=fig, mode='rgb', antialiased=False) elif backend in ['visvis']: import visvis as vv app = vv.use() fig = vv.figure() ax = vv.subplot(111) ax.axis.visible = 0 ax.axis.xLabel = 'x' ax.axis.yLabel = 'y' ax.axis.zLabel = 'z' length = 1.4 for i in range(3): direction = np.zeros((3, )) direction[i] = 1 cyl = vv.solidCylinder(translation=(0, 0, 0), scaling=(.05, .05, length), direction=tuple(direction), axesAdjust=False, axes=ax) cyl.faceColor = (.75, .75, .75) translation = np.zeros((3, )) translation[i] = length cone = vv.solidCone(translation=tuple(translation), scaling=(.1, .1, .2), direction=tuple(direction), axesAdjust=False, axes=ax) cone.faceColor = (.75, .75, .75) surf = vv.surf(xyz_centers[:, 0].reshape(H.shape), xyz_centers[:, 1].reshape(H.shape), xyz_centers[:, 2].reshape(H.shape), H, axes=ax) # set colormap cmap = cmap.lower() if cmap.endswith('_r'): cm = vv.colormaps[cmap[:-2]] cm = cm[::-1] else: cm = vv.colormaps[cmap] surf.colormap = cm if clim is not None: # apply colormap limits surf.clim = clim # ax.Draw() # add labels to indicate pitch and/or roll axes aa = np.deg2rad(np.linspace(45, 315, 100) - 90) r = .25 + .05 d = 1.25 + .25 color = (.25, .25, .25) if pitch_arrow: # pitch rotation (in x/z plane, i.e. around y-axis) xx = r * np.cos(aa) zz = r * np.sin(aa) yy = d * np.ones_like(xx) vv.plot(xx, yy, zz, lw=5, lc=color, ls="-", axesAdjust=False, axes=ax) translation = (xx[0], yy[0], zz[0]) direction = (xx[0] - xx[1], yy[0] - yy[1], zz[0] - zz[1]) cone = vv.solidCone(translation=translation, scaling=(.05, .05, .1), direction=direction, axesAdjust=False, axes=ax) cone.faceColor = color if pitch_label: vv.Text(ax, 'Pitch', x=0, y=.9 * d, z=.5, fontSize=28, color=color) if roll_arrow: # roll rotation (in y/z plane, i.e. around x-axis) yy = r * np.cos(aa[::-1]) zz = r * np.sin(aa[::-1]) xx = d * np.ones_like(xx) vv.plot(xx, yy, zz, lw=5, lc=color, ls="-", axesAdjust=False, axes=ax) translation = (xx[0], yy[0], zz[0]) direction = (xx[0] - xx[1], yy[0] - yy[1], zz[0] - zz[1]) cone = vv.solidCone(translation=translation, scaling=(.05, .05, .1), direction=direction, axesAdjust=False, axes=ax) cone.faceColor = color if roll_label: vv.Text(ax, 'Roll', x=1.25 * d, y=-.8, z=0, fontSize=28, color=color) if avg_direction is not None: # indicate direction of avg head orientation avg_direction = avg_direction / np.sqrt(np.sum(avg_direction**2)) avg_direction *= length cyl = vv.solidCylinder(translation=(0, 0, 0), scaling=(.05, .05, length), direction=tuple(avg_direction), axesAdjust=False, axes=ax) cyl.faceColor = arrow_color cone = vv.solidCone(translation=tuple(avg_direction), scaling=(.1, .1, .2), direction=tuple(avg_direction), axesAdjust=False, axes=ax) cone.faceColor = arrow_color zoom_ = vv.view()['zoom'] if isometric: vv.view(dict(azimuth=90 + ISO_AZIMUTH, elevation=ISO_ELEVATION), zoom=zoom_ * zoom, axes=ax) else: vv.view(dict(azimuth=90 + azimuth, elevation=elevation), zoom=zoom * zoom_, axes=ax) ax.light0.ambient = light_ambient ax.light0.specular = light_specular fig.DrawNow() app.ProcessEvents() img = vv.screenshot(None, ob=ax, sf=2, bg=None, format=None) ax = img if close_figure: vv.close(fig) fig = None return fig, ax
#!/usr/bin/env python """ This example illustrate using text and formatting for text world objects and labels. """ import visvis as vv # Create figure and figure fig = vv.figure() a = vv.cla() a.cameraType = '2d' a.daspectAuto = True a.SetLimits((0, 8), (-1, 10)) # Create text inside the axes vv.Text(a, 'These are texts living in the scene:', 1, 3) vv.Text(a, 'Text can be made \b{bold} easil\by!', 1, 2) vv.Text(a, 'Text can be made \i{italic} easil\iy!', 1, 1) # Create text labels label0 = vv.Label(a, 'These are texts in widget coordinates:') label0.position = 10, 20 label1 = vv.Label(a, 'Sub_{script} and super^{script} are easy as pi^2.') label1.position = 10, 40 label2 = vv.Label(a, u'You can use many Unicode characters: \\u0183 = \u0183') label2.position = 10, 60 label3 = vv.Label( a, 'And can use many Latex like commands: \\alpha \\Alpha' + '\\approx, \sigma, \pi, ') label3.position = 10, 80
""" import visvis as vv # Define a piece of Unicode text in a py2.x py3.x compatible manner hello = u'Привет пустошь' # Create figure and figure fig = vv.figure() a = vv.cla() a.cameraType = '2d' a.daspectAuto = True a.SetLimits((0, 8), (-1, 10)) # Create text inside the axes t1 = vv.Text(a, 'Visvis text', 0.2, 9, 0, 'mono', 30) t2 = vv.Text(a, '... with FreeType!', 1, 8, 0, 'serif', 12) t3 = vv.Text(a, '... and Unicode: %s!' % hello, 1, 7) t3 = vv.Text( a, '\Gamma\rho\epsilon\epsilon\kappa letters and ' + ' \rightarrow math \otimes symbols', 1, 6) t2 = vv.Text( a, '\b{bold}, \i{italic}, and \b{\i{bolditalic}} \bfon\its' + ' and sup^{script} and sub_{script}', 1, 5, 0, 'serif') t3 = vv.Text(a, 'Look, I\'m at an angle!', 1, 4) t3.textAngle = -20 t3.fontSize = 12 # Create text labels label1 = vv.Label(a, 'This is a Label')