def main(): args = parse_args() print('Will save to ' + args.odir) if not os.path.exists(args.odir): os.makedirs(args.odir) with open(os.path.join(args.odir, 'cmdline.txt'), 'w') as f: f.write(" ".join([ "'" + a + "'" if (len(a) == 0 or a[0] != '-') else a for a in sys.argv ])) set_seed(args.seed, args.cuda) logging.getLogger().setLevel( logging.INFO) # set to logging.DEBUG to allow for more prints if (args.dataset == 'sema3d' and args.db_test_name.startswith('test')) or ( args.dataset.startswith('s3dis_02') and args.cvfold == 2): # needed in pytorch 0.2 for super-large graphs with batchnorm in fnet (https://github.com/pytorch/pytorch/pull/2919) torch.backends.cudnn.enabled = False if args.use_pyg: torch.backends.cudnn.enabled = False # Decide on the dataset if args.dataset == 'sema3d': import sema3d_dataset dbinfo = sema3d_dataset.get_info(args) create_dataset = sema3d_dataset.get_datasets elif args.dataset == 's3dis': import s3dis_dataset dbinfo = s3dis_dataset.get_info(args) create_dataset = s3dis_dataset.get_datasets elif args.dataset == 'vkitti': import vkitti_dataset dbinfo = vkitti_dataset.get_info(args) create_dataset = vkitti_dataset.get_datasets elif args.dataset == 'custom_dataset': import custom_dataset # <- to write! dbinfo = custom_dataset.get_info(args) create_dataset = custom_dataset.get_datasets else: raise NotImplementedError('Unknown dataset ' + args.dataset) # Create model and optimizer if args.resume != '': if args.resume == 'RESUME': args.resume = args.odir + '/model.pth.tar' model, optimizer, stats = resume(args, dbinfo) else: model = create_model(args, dbinfo) optimizer = create_optimizer(args, model) stats = [] train_dataset, test_dataset, valid_dataset, scaler = create_dataset(args) print( f"Train dataset: {len(train_dataset)} elements - Test dataset: {len(test_dataset)} elements - " f"Validation dataset: {len(valid_dataset)} elements") ptnCloudEmbedder = pointnet.CloudEmbedder(args) scheduler = MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_decay, last_epoch=args.start_epoch - 1) def train(): """ Trains for one epoch """ model.train() loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, collate_fn=spg.eccpc_collate, num_workers=args.nworkers, shuffle=True, drop_last=True) if logging.getLogger().getEffectiveLevel() > logging.DEBUG: loader = tqdm(loader, ncols=65) loss_meter = tnt.meter.AverageValueMeter() acc_meter = tnt.meter.ClassErrorMeter(accuracy=True) confusion_matrix = metrics.ConfusionMatrix(dbinfo['classes']) t0 = time.time() # iterate over dataset in batches for bidx, (targets, GIs, clouds_data) in enumerate(loader): t_loader = 1000 * (time.time() - t0) model.ecc.set_info(GIs, args.cuda) label_mode_cpu, label_vec_cpu, segm_size_cpu = targets[:, 0], targets[:, 2:], targets[:, 1:].sum( 1 ) if args.cuda: label_mode, label_vec, segm_size = label_mode_cpu.cuda( ), label_vec_cpu.float().cuda(), segm_size_cpu.float().cuda() else: label_mode, label_vec, segm_size = label_mode_cpu, label_vec_cpu.float( ), segm_size_cpu.float() optimizer.zero_grad() t0 = time.time() embeddings = ptnCloudEmbedder.run(model, *clouds_data) outputs = model.ecc(embeddings) loss = nn.functional.cross_entropy(outputs, Variable(label_mode), weight=dbinfo["class_weights"]) loss.backward() ptnCloudEmbedder.bw_hook() if args.grad_clip > 0: for p in model.parameters(): p.grad.data.clamp_(-args.grad_clip, args.grad_clip) optimizer.step() t_trainer = 1000 * (time.time() - t0) loss_meter.add(loss.item()) # pytorch 0.4 o_cpu, t_cpu, tvec_cpu = filter_valid(outputs.data.cpu().numpy(), label_mode_cpu.numpy(), label_vec_cpu.numpy()) acc_meter.add(o_cpu, t_cpu) confusion_matrix.count_predicted_batch(tvec_cpu, np.argmax(o_cpu, 1)) logging.debug( 'Batch loss %f, Loader time %f ms, Trainer time %f ms.', loss.data.item(), t_loader, t_trainer) t0 = time.time() metrics_trn = { 'acc': acc_meter.value()[0], 'loss': loss_meter.value()[0], 'oacc': confusion_matrix.get_overall_accuracy(), 'avg_iou': confusion_matrix.get_average_intersection_union() } return metrics_trn def eval(is_valid=False): """ Evaluated model on test set """ model.eval() if is_valid: # validation loader = torch.utils.data.DataLoader(valid_dataset, batch_size=1, collate_fn=spg.eccpc_collate, num_workers=args.nworkers) else: # evaluation loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, collate_fn=spg.eccpc_collate, num_workers=args.nworkers) if logging.getLogger().getEffectiveLevel() > logging.DEBUG: loader = tqdm(loader, ncols=65) acc_meter = tnt.meter.ClassErrorMeter(accuracy=True) loss_meter = tnt.meter.AverageValueMeter() confusion_matrix = metrics.ConfusionMatrix(dbinfo['classes']) # iterate over dataset in batches for bidx, (targets, GIs, clouds_data) in enumerate(loader): model.ecc.set_info(GIs, args.cuda) label_mode_cpu, label_vec_cpu, segm_size_cpu = targets[:, 0], targets[:, 2:], targets[:, 1:].sum( 1 ).float( ) if args.cuda: label_mode, label_vec, segm_size = label_mode_cpu.cuda( ), label_vec_cpu.float().cuda(), segm_size_cpu.float().cuda() else: label_mode, label_vec, segm_size = label_mode_cpu, label_vec_cpu.float( ), segm_size_cpu.float() embeddings = ptnCloudEmbedder.run(model, *clouds_data) outputs = model.ecc(embeddings) loss = nn.functional.cross_entropy(outputs, Variable(label_mode), weight=dbinfo["class_weights"]) loss_meter.add(loss.item()) o_cpu, t_cpu, tvec_cpu = filter_valid(outputs.data.cpu().numpy(), label_mode_cpu.numpy(), label_vec_cpu.numpy()) if t_cpu.size > 0: acc_meter.add(o_cpu, t_cpu) confusion_matrix.count_predicted_batch(tvec_cpu, np.argmax(o_cpu, 1)) metrics_eval = { 'acc': meter_value(acc_meter), 'loss': loss_meter.value()[0], 'oacc': confusion_matrix.get_overall_accuracy(), 'avg_iou': confusion_matrix.get_average_intersection_union(), 'avg_acc': confusion_matrix.get_mean_class_accuracy() } return metrics_eval def eval_final(): """ Evaluated model on test set in an extended way: computes estimates over multiple samples of point clouds and stores predictions """ model.eval() acc_meter = tnt.meter.ClassErrorMeter(accuracy=True) confusion_matrix = metrics.ConfusionMatrix(dbinfo['classes']) collected, predictions = defaultdict(list), {} # collect predictions over multiple sampling seeds for ss in range(args.test_multisamp_n): test_dataset_ss = create_dataset(args, ss)[1] loader = torch.utils.data.DataLoader(test_dataset_ss, batch_size=1, collate_fn=spg.eccpc_collate, num_workers=args.nworkers) if logging.getLogger().getEffectiveLevel() > logging.DEBUG: loader = tqdm(loader, ncols=65) # iterate over dataset in batches for bidx, (targets, GIs, clouds_data) in enumerate(loader): model.ecc.set_info(GIs, args.cuda) label_mode_cpu, label_vec_cpu, segm_size_cpu = targets[:, 0], targets[:, 2:], targets[:, 1:].sum( 1 ).float( ) embeddings = ptnCloudEmbedder.run(model, *clouds_data) outputs = model.ecc(embeddings) fname = clouds_data[0][0][:clouds_data[0][0].rfind('.')] collected[fname].append( (outputs.data.cpu().numpy(), label_mode_cpu.numpy(), label_vec_cpu.numpy())) # aggregate predictions (mean) for fname, lst in collected.items(): o_cpu, t_cpu, tvec_cpu = list(zip(*lst)) if args.test_multisamp_n > 1: o_cpu = np.mean(np.stack(o_cpu, 0), 0) else: o_cpu = o_cpu[0] t_cpu, tvec_cpu = t_cpu[0], tvec_cpu[0] predictions[fname] = np.argmax(o_cpu, 1) o_cpu, t_cpu, tvec_cpu = filter_valid(o_cpu, t_cpu, tvec_cpu) if t_cpu.size > 0: acc_meter.add(o_cpu, t_cpu) confusion_matrix.count_predicted_batch(tvec_cpu, np.argmax(o_cpu, 1)) per_class_iou = {} perclsiou = confusion_matrix.get_intersection_union_per_class() for c, name in dbinfo['inv_class_map'].items(): per_class_iou[name] = perclsiou[c] metrics_final = { 'acc': meter_value(acc_meter), 'oacc': confusion_matrix.get_overall_accuracy(), 'avg_iou': confusion_matrix.get_average_intersection_union(), 'per_class_iou': per_class_iou, 'predictions': predictions, 'avg_acc': confusion_matrix.get_mean_class_accuracy(), 'confusion_matrix': confusion_matrix.confusion_matrix } return metrics_final # Training loop try: best_iou = stats[-1]['best_iou'] except: best_iou = 0 TRAIN_COLOR = '\033[0m' VAL_COLOR = '\033[0;94m' TEST_COLOR = '\033[0;93m' BEST_COLOR = '\033[0;92m' epoch = args.start_epoch for epoch in range(args.start_epoch, args.epochs): print(f"Epoch {epoch}/{args.epochs} ({args.odir})") scheduler.step() metrics_trn = train() print( TRAIN_COLOR + f"-> Train Loss: {metrics_trn['loss']:.4f} Train accuracy: {metrics_trn['acc']:.2f}%" ) new_best_model = False if args.use_val_set: metrics_eval = eval(True) print( VAL_COLOR + f"-> Val Loss: {metrics_eval['loss']:.4f} Val accuracy: {metrics_eval['acc']:.2f}% " f"Val oAcc: {100*metrics_eval['oacc']:.2f}% Val IoU: {100*metrics_eval['avg_iou']:.2f}% " f"best ioU: {100*max(best_iou,metrics_eval['avg_iou']):.2f}%" + TRAIN_COLOR) if metrics_eval[ 'avg_iou'] > best_iou: # best score yet on the validation set print(BEST_COLOR + '-> New best model achieved!' + TRAIN_COLOR) best_iou = metrics_eval['avg_iou'] new_best_model = True torch.save( { 'epoch': epoch + 1, 'args': args, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict() }, os.path.join(args.odir, 'model.pth.tar')) elif epoch % args.save_nth_epoch == 0 or epoch == args.epochs - 1: torch.save( { 'epoch': epoch + 1, 'args': args, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict() }, os.path.join(args.odir, 'model.pth.tar')) # test every test_nth_epochs # or test after each new model (but skip the first 5 for efficiency) if (not args.use_val_set and (epoch + 1) % args.test_nth_epoch == 0) or (args.use_val_set and new_best_model and epoch > 5): metrics_test = eval(False) print( TEST_COLOR + f"-> Test Loss: {metrics_test['loss']:.4f} Test accuracy: {metrics_test['acc']:.2f}% " f"Test oAcc: {100*metrics_test['oacc']:.2f}% Test avgIoU: {100*metrics_test['avg_iou']:.2f}%" + TRAIN_COLOR) else: metrics_test = { 'acc': 0, 'loss': 0, 'oacc': 0, 'avg_iou': 0, 'avg_acc': 0 } stats.append({ 'epoch': epoch, 'acc_trn': metrics_trn['acc'], 'loss_trn': metrics_trn['loss'], 'oacc_trn': metrics_trn['oacc'], 'avg_iou_trn': metrics_trn['avg_iou'], 'acc_test': metrics_test['acc'], 'oacc_test': metrics_test['oacc'], 'avg_iou_test': metrics_test['avg_iou'], 'avg_acc_test': metrics_test['avg_acc'], 'best_iou': best_iou }) if math.isnan(metrics_trn['loss']): break if len(stats) > 0: with open(os.path.join(args.odir, 'trainlog.json'), 'w') as outfile: json.dump(stats, outfile, indent=4) if args.use_val_set: args.resume = args.odir + '/model.pth.tar' model, optimizer, stats = resume(args, dbinfo) torch.save( { 'epoch': epoch + 1, 'args': args, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict() }, os.path.join(args.odir, 'model.pth.tar')) # Final evaluation if args.test_multisamp_n > 0 and 'test' in args.db_test_name: metrics_test = eval_final() print( f"-> Multisample {args.test_multisamp_n}: Test accuracy: {metrics_test['acc']:.2f}, \tTest oAcc: {metrics_test['oacc']:.2f}, " f"\tTest avgIoU: {metrics_test['avg_iou']:.2f}, \tTest mAcc: {metrics_test['avg_acc']:.2f}'" ) with h5py.File( os.path.join(args.odir, 'predictions_' + args.db_test_name + '.h5'), 'w') as hf: for fname, o_cpu in metrics_test['predictions'].items(): hf.create_dataset(name=fname, data=o_cpu) # (0-based classes) with open( os.path.join(args.odir, 'scores_' + args.db_test_name + '.json'), 'w') as outfile: json.dump([{ 'epoch': args.start_epoch, 'acc_test': metrics_test['acc'], 'oacc_test': metrics_test['oacc'], 'avg_iou_test': metrics_test['avg_iou'], 'per_class_iou_test': metrics_test['per_class_iou'], 'avg_acc_test': metrics_test['avg_acc'] }], outfile) np.save(os.path.join(args.odir, 'pointwise_cm.npy'), metrics_test['confusion_matrix'])
def main(): parser = argparse.ArgumentParser( description= 'Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs') # Optimization arguments parser.add_argument('--wd', default=0, type=float, help='Weight decay') parser.add_argument('--lr', default=1e-2, type=float, help='Initial learning rate') parser.add_argument( '--lr_decay', default=0.7, type=float, help='Multiplicative factor used on learning rate at `lr_steps`') parser.add_argument( '--lr_steps', default='[]', help='List of epochs where the learning rate is decreased by `lr_decay`' ) parser.add_argument('--momentum', default=0.9, type=float, help='Momentum') parser.add_argument( '--epochs', default=10, type=int, help='Number of epochs to train. If <=0, only testing will be done.') parser.add_argument('--batch_size', default=2, type=int, help='Batch size') parser.add_argument('--optim', default='adam', help='Optimizer: sgd|adam') parser.add_argument( '--grad_clip', default=1, type=float, help='Element-wise clipping of gradient. If 0, does not clip') parser.add_argument( '--loss_weights', default='none', help='[none, proportional, sqrt] how to weight the loss function') # Learning process arguments parser.add_argument('--cuda', default=1, type=int, help='Bool, use cuda') parser.add_argument( '--nworkers', default=0, type=int, help= 'Num subprocesses to use for data loading. 0 means that the data will be loaded in the main process' ) parser.add_argument('--test_nth_epoch', default=1, type=int, help='Test each n-th epoch during training') parser.add_argument('--save_nth_epoch', default=1, type=int, help='Save model each n-th epoch during training') parser.add_argument( '--test_multisamp_n', default=10, type=int, help='Average logits obtained over runs with different seeds') # Dataset parser.add_argument('--dataset', default='sema3d', help='Dataset name: sema3d|s3dis') parser.add_argument( '--cvfold', default=0, type=int, help='Fold left-out for testing in leave-one-out setting (S3DIS)') parser.add_argument('--odir', default='results', help='Directory to store results') parser.add_argument('--resume', default='', help='Loads a previously saved model.') parser.add_argument('--db_train_name', default='train') parser.add_argument('--db_test_name', default='test') parser.add_argument('--use_val_set', type=int, default=0) parser.add_argument('--SEMA3D_PATH', default='datasets/semantic3d') parser.add_argument('--S3DIS_PATH', default='datasets/s3dis') parser.add_argument('--VKITTI_PATH', default='datasets/vkitti') parser.add_argument('--CUSTOM_SET_PATH', default='datasets/custom_set') # Model parser.add_argument( '--model_config', default='gru_10,f_8', help= 'Defines the model as a sequence of layers, see graphnet.py for definitions of respective layers and acceptable arguments. In short: rectype_repeats_mv_layernorm_ingate_concat, with rectype the type of recurrent unit [gru/crf/lstm], repeats the number of message passing iterations, mv (default True) the use of matrix-vector (mv) instead vector-vector (vv) edge filters, layernorm (default True) the use of layernorms in the recurrent units, ingate (default True) the use of input gating, concat (default True) the use of state concatenation' ) parser.add_argument('--seed', default=1, type=int, help='Seed for random initialisation') parser.add_argument( '--edge_attribs', default= 'delta_avg,delta_std,nlength/ld,surface/ld,volume/ld,size/ld,xyz/d', help= 'Edge attribute definition, see spg_edge_features() in spg.py for definitions.' ) # Point cloud processing parser.add_argument( '--pc_attribs', default='xyzrgbelpsvXYZ', help= 'Point attributes fed to PointNets, if empty then all possible. xyz = coordinates, rgb = color, e = elevation, lpsv = geometric feature, d = distance to center' ) parser.add_argument( '--pc_augm_scale', default=0, type=float, help= 'Training augmentation: Uniformly random scaling in [1/scale, scale]') parser.add_argument( '--pc_augm_rot', default=1, type=int, help='Training augmentation: Bool, random rotation around z-axis') parser.add_argument( '--pc_augm_mirror_prob', default=0, type=float, help='Training augmentation: Probability of mirroring about x or y axes' ) parser.add_argument( '--pc_augm_jitter', default=1, type=int, help='Training augmentation: Bool, Gaussian jittering of all attributes' ) parser.add_argument( '--pc_xyznormalize', default=1, type=int, help='Bool, normalize xyz into unit ball, i.e. in [-0.5,0.5]') # Filter generating network parser.add_argument( '--fnet_widths', default='[32,128,64]', help= 'List of width of hidden filter gen net layers (excluding the input and output ones, they are automatic)' ) parser.add_argument( '--fnet_llbias', default=0, type=int, help='Bool, use bias in the last layer in filter gen net') parser.add_argument( '--fnet_orthoinit', default=1, type=int, help='Bool, use orthogonal weight initialization for filter gen net.') parser.add_argument( '--fnet_bnidx', default=2, type=int, help='Layer index to insert batchnorm to. -1=do not insert.') parser.add_argument( '--edge_mem_limit', default=30000, type=int, help= 'Number of edges to process in parallel during computation, a low number can reduce memory peaks.' ) # Superpoint graph parser.add_argument( '--spg_attribs01', default=1, type=int, help='Bool, normalize edge features to 0 mean 1 deviation') parser.add_argument('--spg_augm_nneigh', default=100, type=int, help='Number of neighborhoods to sample in SPG') parser.add_argument('--spg_augm_order', default=3, type=int, help='Order of neighborhoods to sample in SPG') parser.add_argument( '--spg_augm_hardcutoff', default=512, type=int, help= 'Maximum number of superpoints larger than args.ptn_minpts to sample in SPG' ) parser.add_argument( '--spg_superedge_cutoff', default=-1, type=float, help= 'Artificially constrained maximum length of superedge, -1=do not constrain' ) # Point net parser.add_argument( '--ptn_minpts', default=40, type=int, help= 'Minimum number of points in a superpoint for computing its embedding.' ) parser.add_argument('--ptn_npts', default=128, type=int, help='Number of input points for PointNet.') parser.add_argument('--ptn_widths', default='[[64,64,128,128,256], [256,64,32]]', help='PointNet widths') parser.add_argument('--ptn_widths_stn', default='[[64,64,128], [128,64]]', help='PointNet\'s Transformer widths') parser.add_argument( '--ptn_nfeat_stn', default=11, type=int, help='PointNet\'s Transformer number of input features') parser.add_argument('--ptn_prelast_do', default=0, type=float) parser.add_argument( '--ptn_mem_monger', default=1, type=int, help= 'Bool, save GPU memory by recomputing PointNets in back propagation.') args = parser.parse_args() args.start_epoch = 0 args.lr_steps = ast.literal_eval(args.lr_steps) args.fnet_widths = ast.literal_eval(args.fnet_widths) args.ptn_widths = ast.literal_eval(args.ptn_widths) args.ptn_widths_stn = ast.literal_eval(args.ptn_widths_stn) print('Will save to ' + args.odir) if not os.path.exists(args.odir): os.makedirs(args.odir) with open(os.path.join(args.odir, 'cmdline.txt'), 'w') as f: f.write(" ".join([ "'" + a + "'" if (len(a) == 0 or a[0] != '-') else a for a in sys.argv ])) set_seed(args.seed, args.cuda) logging.getLogger().setLevel( logging.INFO) #set to logging.DEBUG to allow for more prints if (args.dataset == 'sema3d' and args.db_test_name.startswith('test')) or ( args.dataset.startswith('s3dis_02') and args.cvfold == 2): # needed in pytorch 0.2 for super-large graphs with batchnorm in fnet (https://github.com/pytorch/pytorch/pull/2919) torch.backends.cudnn.enabled = False # Decide on the dataset if args.dataset == 'sema3d': import sema3d_dataset dbinfo = sema3d_dataset.get_info(args) create_dataset = sema3d_dataset.get_datasets elif args.dataset == 's3dis': import s3dis_dataset dbinfo = s3dis_dataset.get_info(args) create_dataset = s3dis_dataset.get_datasets elif args.dataset == 'vkitti': import vkitti_dataset dbinfo = vkitti_dataset.get_info(args) create_dataset = vkitti_dataset.get_datasets elif args.dataset == 'custom_dataset': import custom_dataset #<- to write! dbinfo = custom_dataset.get_info(args) create_dataset = custom_dataset.get_datasets else: raise NotImplementedError('Unknown dataset ' + args.dataset) # Create model and optimizer if args.resume != '': if args.resume == 'RESUME': args.resume = args.odir + '/model.pth.tar' model, optimizer, stats = resume(args, dbinfo) else: model = create_model(args, dbinfo) optimizer = create_optimizer(args, model) stats = [] train_dataset, test_dataset, valid_dataset, scaler = create_dataset(args) print( 'Train dataset: %i elements - Test dataset: %i elements - Validation dataset: %i elements' % (len(train_dataset), len(test_dataset), len(valid_dataset))) ptnCloudEmbedder = pointnet.CloudEmbedder(args) scheduler = MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_decay, last_epoch=args.start_epoch - 1) ############ def train(): """ Trains for one epoch """ model.train() loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, collate_fn=spg.eccpc_collate, num_workers=args.nworkers, shuffle=True, drop_last=True) if logging.getLogger().getEffectiveLevel() > logging.DEBUG: loader = tqdm(loader, ncols=65) loss_meter = tnt.meter.AverageValueMeter() acc_meter = tnt.meter.ClassErrorMeter(accuracy=True) confusion_matrix = metrics.ConfusionMatrix(dbinfo['classes']) t0 = time.time() # iterate over dataset in batches for bidx, (targets, GIs, clouds_data) in enumerate(loader): t_loader = 1000 * (time.time() - t0) model.ecc.set_info(GIs, args.cuda) label_mode_cpu, label_vec_cpu, segm_size_cpu = targets[:, 0], targets[:, 2:], targets[:, 1:].sum( 1 ) if args.cuda: label_mode, label_vec, segm_size = label_mode_cpu.cuda( ), label_vec_cpu.float().cuda(), segm_size_cpu.float().cuda() else: label_mode, label_vec, segm_size = label_mode_cpu, label_vec_cpu.float( ), segm_size_cpu.float() optimizer.zero_grad() t0 = time.time() embeddings = ptnCloudEmbedder.run(model, *clouds_data) outputs = model.ecc(embeddings) loss = nn.functional.cross_entropy(outputs, Variable(label_mode), weight=dbinfo["class_weights"]) loss.backward() ptnCloudEmbedder.bw_hook() if args.grad_clip > 0: for p in model.parameters(): p.grad.data.clamp_(-args.grad_clip, args.grad_clip) optimizer.step() t_trainer = 1000 * (time.time() - t0) #loss_meter.add(loss.data[0]) # pytorch 0.3 loss_meter.add(loss.item()) # pytorch 0.4 o_cpu, t_cpu, tvec_cpu = filter_valid(outputs.data.cpu().numpy(), label_mode_cpu.numpy(), label_vec_cpu.numpy()) acc_meter.add(o_cpu, t_cpu) confusion_matrix.count_predicted_batch(tvec_cpu, np.argmax(o_cpu, 1)) logging.debug( 'Batch loss %f, Loader time %f ms, Trainer time %f ms.', loss.data.item(), t_loader, t_trainer) t0 = time.time() return acc_meter.value()[0], loss_meter.value( )[0], confusion_matrix.get_overall_accuracy( ), confusion_matrix.get_average_intersection_union() ############ def eval(is_valid=False): """ Evaluated model on test set """ model.eval() if is_valid: #validation loader = torch.utils.data.DataLoader(valid_dataset, batch_size=1, collate_fn=spg.eccpc_collate, num_workers=args.nworkers) else: #evaluation loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, collate_fn=spg.eccpc_collate, num_workers=args.nworkers) if logging.getLogger().getEffectiveLevel() > logging.DEBUG: loader = tqdm(loader, ncols=65) acc_meter = tnt.meter.ClassErrorMeter(accuracy=True) loss_meter = tnt.meter.AverageValueMeter() confusion_matrix = metrics.ConfusionMatrix(dbinfo['classes']) # iterate over dataset in batches for bidx, (targets, GIs, clouds_data) in enumerate(loader): model.ecc.set_info(GIs, args.cuda) label_mode_cpu, label_vec_cpu, segm_size_cpu = targets[:, 0], targets[:, 2:], targets[:, 1:].sum( 1 ).float( ) if args.cuda: label_mode, label_vec, segm_size = label_mode_cpu.cuda( ), label_vec_cpu.float().cuda(), segm_size_cpu.float().cuda() else: label_mode, label_vec, segm_size = label_mode_cpu, label_vec_cpu.float( ), segm_size_cpu.float() embeddings = ptnCloudEmbedder.run(model, *clouds_data) outputs = model.ecc(embeddings) loss = nn.functional.cross_entropy(outputs, Variable(label_mode), weight=dbinfo["class_weights"]) loss_meter.add(loss.item()) o_cpu, t_cpu, tvec_cpu = filter_valid(outputs.data.cpu().numpy(), label_mode_cpu.numpy(), label_vec_cpu.numpy()) if t_cpu.size > 0: acc_meter.add(o_cpu, t_cpu) confusion_matrix.count_predicted_batch(tvec_cpu, np.argmax(o_cpu, 1)) return meter_value(acc_meter), loss_meter.value( )[0], confusion_matrix.get_overall_accuracy( ), confusion_matrix.get_average_intersection_union( ), confusion_matrix.get_mean_class_accuracy() ############ def eval_final(): """ Evaluated model on test set in an extended way: computes estimates over multiple samples of point clouds and stores predictions """ model.eval() acc_meter = tnt.meter.ClassErrorMeter(accuracy=True) confusion_matrix = metrics.ConfusionMatrix(dbinfo['classes']) collected, predictions = defaultdict(list), {} # collect predictions over multiple sampling seeds for ss in range(args.test_multisamp_n): test_dataset_ss = create_dataset(args, ss)[1] loader = torch.utils.data.DataLoader(test_dataset_ss, batch_size=1, collate_fn=spg.eccpc_collate, num_workers=args.nworkers) if logging.getLogger().getEffectiveLevel() > logging.DEBUG: loader = tqdm(loader, ncols=65) # iterate over dataset in batches for bidx, (targets, GIs, clouds_data) in enumerate(loader): model.ecc.set_info(GIs, args.cuda) label_mode_cpu, label_vec_cpu, segm_size_cpu = targets[:, 0], targets[:, 2:], targets[:, 1:].sum( 1 ).float( ) embeddings = ptnCloudEmbedder.run(model, *clouds_data) outputs = model.ecc(embeddings) fname = clouds_data[0][0][:clouds_data[0][0].rfind('.')] collected[fname].append( (outputs.data.cpu().numpy(), label_mode_cpu.numpy(), label_vec_cpu.numpy())) # aggregate predictions (mean) for fname, lst in collected.items(): o_cpu, t_cpu, tvec_cpu = list(zip(*lst)) if args.test_multisamp_n > 1: o_cpu = np.mean(np.stack(o_cpu, 0), 0) else: o_cpu = o_cpu[0] t_cpu, tvec_cpu = t_cpu[0], tvec_cpu[0] predictions[fname] = np.argmax(o_cpu, 1) o_cpu, t_cpu, tvec_cpu = filter_valid(o_cpu, t_cpu, tvec_cpu) if t_cpu.size > 0: acc_meter.add(o_cpu, t_cpu) confusion_matrix.count_predicted_batch(tvec_cpu, np.argmax(o_cpu, 1)) per_class_iou = {} perclsiou = confusion_matrix.get_intersection_union_per_class() for c, name in dbinfo['inv_class_map'].items(): per_class_iou[name] = perclsiou[c] return meter_value(acc_meter), confusion_matrix.get_overall_accuracy( ), confusion_matrix.get_average_intersection_union( ), per_class_iou, predictions, confusion_matrix.get_mean_class_accuracy( ), confusion_matrix.confusion_matrix ############ # Training loop try: best_iou = stats[-1]['best_iou'] except: best_iou = 0 TRAIN_COLOR = '\033[0m' VAL_COLOR = '\033[0;94m' TEST_COLOR = '\033[0;93m' BEST_COLOR = '\033[0;92m' epoch = args.start_epoch for epoch in range(args.start_epoch, args.epochs): print('Epoch {}/{} ({}):'.format(epoch, args.epochs, args.odir)) scheduler.step() acc, loss, oacc, avg_iou = train() print(TRAIN_COLOR + '-> Train Loss: %1.4f Train accuracy: %3.2f%%' % (loss, acc)) new_best_model = False if args.use_val_set: acc_val, loss_val, oacc_val, avg_iou_val, avg_acc_val = eval(True) print(VAL_COLOR + '-> Val Loss: %1.4f Val accuracy: %3.2f%% Val oAcc: %3.2f%% Val IoU: %3.2f%% best ioU: %3.2f%%' % \ (loss_val, acc_val, 100*oacc_val, 100*avg_iou_val,100*max(best_iou,avg_iou_val)) + TRAIN_COLOR) if avg_iou_val > best_iou: #best score yet on the validation set print(BEST_COLOR + '-> New best model achieved!' + TRAIN_COLOR) best_iou = avg_iou_val new_best_model = True torch.save( { 'epoch': epoch + 1, 'args': args, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict() }, os.path.join(args.odir, 'model.pth.tar')) elif epoch % args.save_nth_epoch == 0 or epoch == args.epochs - 1: torch.save( { 'epoch': epoch + 1, 'args': args, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict() }, os.path.join(args.odir, 'model.pth.tar')) #test every test_nth_epochs #or test after each enw model (but skip the first 5 for efficiency) if (not(args.use_val_set) and (epoch+1) % args.test_nth_epoch == 0) \ or (args.use_val_set and new_best_model and epoch > 5): acc_test, loss_test, oacc_test, avg_iou_test, avg_acc_test = eval( False) print(TEST_COLOR + '-> Test Loss: %1.4f Test accuracy: %3.2f%% Test oAcc: %3.2f%% Test avgIoU: %3.2f%%' % \ (loss_test, acc_test, 100*oacc_test, 100*avg_iou_test) + TRAIN_COLOR) else: acc_test, loss_test, oacc_test, avg_iou_test, avg_acc_test = 0, 0, 0, 0, 0 stats.append({ 'epoch': epoch, 'acc': acc, 'loss': loss, 'oacc': oacc, 'avg_iou': avg_iou, 'acc_test': acc_test, 'oacc_test': oacc_test, 'avg_iou_test': avg_iou_test, 'avg_acc_test': avg_acc_test, 'best_iou': best_iou }) if epoch % args.save_nth_epoch == 0 or epoch == args.epochs - 1: with open(os.path.join(args.odir, 'trainlog.json'), 'w') as outfile: json.dump(stats, outfile, indent=4) torch.save( { 'epoch': epoch + 1, 'args': args, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'scaler': scaler }, os.path.join(args.odir, 'model.pth.tar')) if math.isnan(loss): break if len(stats) > 0: with open(os.path.join(args.odir, 'trainlog.json'), 'w') as outfile: json.dump(stats, outfile, indent=4) if args.use_val_set: args.resume = args.odir + '/model.pth.tar' model, optimizer, stats = resume(args, dbinfo) torch.save( { 'epoch': epoch + 1, 'args': args, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict() }, os.path.join(args.odir, 'model.pth.tar')) # Final evaluation if args.test_multisamp_n > 0 and 'test' in args.db_test_name: acc_test, oacc_test, avg_iou_test, per_class_iou_test, predictions_test, avg_acc_test, confusion_matrix = eval_final( ) print( '-> Multisample {}: Test accuracy: {}, \tTest oAcc: {}, \tTest avgIoU: {}, \tTest mAcc: {}' .format(args.test_multisamp_n, acc_test, oacc_test, avg_iou_test, avg_acc_test)) with h5py.File( os.path.join(args.odir, 'predictions_' + args.db_test_name + '.h5'), 'w') as hf: for fname, o_cpu in predictions_test.items(): hf.create_dataset(name=fname, data=o_cpu) #(0-based classes) with open( os.path.join(args.odir, 'scores_' + args.db_test_name + '.json'), 'w') as outfile: json.dump([{ 'epoch': args.start_epoch, 'acc_test': acc_test, 'oacc_test': oacc_test, 'avg_iou_test': avg_iou_test, 'per_class_iou_test': per_class_iou_test, 'avg_acc_test': avg_acc_test }], outfile) np.save(os.path.join(args.odir, 'pointwise_cm.npy'), confusion_matrix)
def main(): parser = argparse.ArgumentParser( description= 'Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs') # Optimization arguments parser.add_argument('--wd', default=0, type=float, help='Weight decay') parser.add_argument('--lr', default=1e-2, type=float, help='Initial learning rate') parser.add_argument( '--lr_decay', default=0.7, type=float, help='Multiplicative factor used on learning rate at `lr_steps`') parser.add_argument( '--lr_steps', default='[]', help='List of epochs where the learning rate is decreased by `lr_decay`' ) parser.add_argument('--momentum', default=0.9, type=float, help='Momentum') parser.add_argument( '--epochs', default=400, type=int, help='Number of epochs to train. If <=0, only testing will be done.') parser.add_argument('--batch_size', default=2, type=int, help='Batch size') parser.add_argument('--optim', default='adam', help='Optimizer: sgd|adam') parser.add_argument( '--grad_clip', default=1, type=float, help='Element-wise clipping of gradient. If 0, does not clip') # Learning process arguments parser.add_argument('--cuda', default=1, type=int, help='Bool, use cuda') parser.add_argument( '--nworkers', default=0, type=int, help= 'Num subprocesses to use for data loading. 0 means that the data will be loaded in the main process' ) parser.add_argument('--test_nth_epoch', default=10, type=int, help='Test each n-th epoch during training') parser.add_argument('--save_nth_epoch', default=10, type=int, help='Save model each n-th epoch during training') parser.add_argument( '--test_multisamp_n', default=10, type=int, help='Average logits obtained over runs with different seeds') # Dataset parser.add_argument('--dataset', default='s3dis', help='Dataset name: sema3d|s3dis') parser.add_argument( '--cvfold', default=0, type=int, help='Fold left-out for testing in leave-one-out setting (S3DIS)') parser.add_argument('--odir', default='results', help='Directory to store results') parser.add_argument('--resume', default='', help='Loads a previously saved model.') parser.add_argument('--db_train_name', default='train') parser.add_argument('--db_test_name', default='val') parser.add_argument('--SEMA3D_PATH', default='datasets/semantic3d') parser.add_argument('--S3DIS_PATH', default='datasets/s3dis') parser.add_argument('--SCANNET_PATH', default='datasets/scannet') parser.add_argument('--VKITTI_PATH', default='datasets/vkitti') parser.add_argument('--CUSTOM_SET_PATH', default='datasets/custom_set') # Model parser.add_argument( '--model_config', default='gru_10,f_8', help= 'Defines the model as a sequence of layers, see graphnet.py for definitions of respective layers and acceptable arguments. In short: rectype_repeats_mv_layernorm_ingate_concat, with rectype the type of recurrent unit [gru/crf/lstm], repeats the number of message passing iterations, mv (default True) the use of matrix-vector (mv) instead vector-vector (vv) edge filters, layernorm (default True) the use of layernorms in the recurrent units, ingate (default True) the use of input gating, concat (default True) the use of state concatenation' ) parser.add_argument('--seed', default=1, type=int, help='Seed for random initialisation') parser.add_argument( '--edge_attribs', default= 'delta_avg,delta_std,nlength/ld,surface/ld,volume/ld,size/ld,xyz/d', help= 'Edge attribute definition, see spg_edge_features() in spg.py for definitions.' ) # Point cloud processing parser.add_argument( '--pc_attribs', default='', help='Point attributes fed to PointNets, if empty then all possible.') parser.add_argument( '--pc_augm_scale', default=0, type=float, help= 'Training augmentation: Uniformly random scaling in [1/scale, scale]') parser.add_argument( '--pc_augm_rot', default=1, type=int, help='Training augmentation: Bool, random rotation around z-axis') parser.add_argument( '--pc_augm_mirror_prob', default=0, type=float, help='Training augmentation: Probability of mirroring about x or y axes' ) parser.add_argument( '--pc_augm_jitter', default=1, type=int, help='Training augmentation: Bool, Gaussian jittering of all attributes' ) parser.add_argument( '--pc_xyznormalize', default=1, type=int, help='Bool, normalize xyz into unit ball, i.e. in [-0.5,0.5]') # Filter generating network parser.add_argument( '--fnet_widths', default='[32,128,64]', help= 'List of width of hidden filter gen net layers (excluding the input and output ones, they are automatic)' ) parser.add_argument( '--fnet_llbias', default=0, type=int, help='Bool, use bias in the last layer in filter gen net') parser.add_argument( '--fnet_orthoinit', default=1, type=int, help='Bool, use orthogonal weight initialization for filter gen net.') parser.add_argument( '--fnet_bnidx', default=2, type=int, help='Layer index to insert batchnorm to. -1=do not insert.') parser.add_argument( '--edge_mem_limit', default=30000, type=int, help= 'Number of edges to process in parallel during computation, a low number can reduce memory peaks.' ) # Superpoint graph parser.add_argument( '--spg_attribs01', default=1, type=int, help='Bool, normalize edge features to 0 mean 1 deviation') parser.add_argument('--spg_augm_nneigh', default=100, type=int, help='Number of neighborhoods to sample in SPG') parser.add_argument('--spg_augm_order', default=3, type=int, help='Order of neighborhoods to sample in SPG') parser.add_argument( '--spg_augm_hardcutoff', default=512, type=int, help= 'Maximum number of superpoints larger than args.ptn_minpts to sample in SPG' ) parser.add_argument( '--spg_superedge_cutoff', default=-1, type=float, help= 'Artificially constrained maximum length of superedge, -1=do not constrain' ) # Point net parser.add_argument( '--ptn_minpts', default=40, type=int, help= 'Minimum number of points in a superpoint for computing its embedding.' ) parser.add_argument('--ptn_npts', default=128, type=int, help='Number of input points for PointNet.') parser.add_argument('--ptn_widths', default='[[64,64,128,128,256], [256,64,32]]', help='PointNet widths') parser.add_argument('--ptn_widths_stn', default='[[64,64,128], [128,64]]', help='PointNet\'s Transformer widths') parser.add_argument( '--ptn_nfeat_stn', default=11, type=int, help='PointNet\'s Transformer number of input features') parser.add_argument('--ptn_prelast_do', default=0, type=float) parser.add_argument( '--ptn_mem_monger', default=1, type=int, help= 'Bool, save GPU memory by recomputing PointNets in back propagation.') parser.add_argument('--ignore_label', type=int, default=255, help='ignore label') # extension parser.add_argument('--extension_th', type=float, default=0.95) parser.add_argument('--loss_w1', type=float, default=1.0, help='weight of cross entropy loss') parser.add_argument('--loss_w2', type=float, default=1.0, help='weight of cross entropy loss of extension') parser.add_argument('--ext_epoch_gap', type=int, default=40, help='interval of epoch for accumulated extension') parser.add_argument('--ext_drop', type=float, default=0.9, help='dropout ratio for accumulated extension') parser.add_argument( '--single_ext_max', type=int, default=40, help='To reduce memory cost,maximum points for a single extension') parser.add_argument( '--max_labeled_att', type=int, default=400, help= 'To reduce memory cost, maximum labeled points for extension attention' ) parser.add_argument( '--max_ext_att_loss', type=int, default=350, help= 'To reduce memory cost, maximum extension points participated in attention and loss' ) parser.add_argument('--data_mode', type=str, default='voxel', choices=['point', 'voxel']) parser.add_argument('--train_gpu', type=int, default=0, help='ignore label') parser.add_argument( '--metric_ignore_class', type=int, default=None, help='maximum extension points participated in attention and loss') args = parser.parse_args() args.start_epoch = 0 args.lr_steps = ast.literal_eval(args.lr_steps) args.fnet_widths = ast.literal_eval(args.fnet_widths) args.ptn_widths = ast.literal_eval(args.ptn_widths) args.ptn_widths_stn = ast.literal_eval(args.ptn_widths_stn) args.extension_dir = os.path.join( args.odir, 'extension_log') # To store the extension intermediate results print(args) print('Will save to ' + args.odir) if not os.path.exists(args.odir): os.makedirs(args.odir) if not os.path.exists(args.extension_dir): os.makedirs(args.extension_dir) with open(os.path.join(args.odir, 'cmdline.txt'), 'w') as f: f.write(" ".join([ "'" + a + "'" if (len(a) == 0 or a[0] != '-') else a for a in sys.argv ])) set_seed(args.seed, args.cuda) if (args.dataset == 'sema3d' and args.db_test_name.startswith('test')) or ( args.dataset.startswith('s3dis_02') and args.cvfold == 2): # needed in pytorch 0.2 for super-large graphs with batchnorm in fnet (https://github.com/pytorch/pytorch/pull/2919) torch.backends.cudnn.enabled = False # Decide on the dataset if args.dataset == 's3dis': import s3dis_dataset dbinfo = s3dis_dataset.get_info(args) create_dataset = s3dis_dataset.get_datasets args.n_labels = 13 elif args.dataset == 'scannet': import scannet_dataset dbinfo = scannet_dataset.get_info(args) create_dataset = scannet_dataset.get_datasets args.n_labels = 20 elif args.dataset == 'vkitti': import vkitti_dataset dbinfo = vkitti_dataset.get_info(args) create_dataset = vkitti_dataset.get_datasets args.n_labels = 13 elif args.dataset == 'custom_dataset': import custom_dataset #<- to write! dbinfo = custom_dataset.get_info(args) create_dataset = custom_dataset.get_datasets else: raise NotImplementedError('Unknown dataset ' + args.dataset) # Create model and optimizer if args.resume != '': model, optimizer, stats = resume(args, dbinfo) else: model = create_model(args, dbinfo) optimizer = create_optimizer(args, model) stats = [] train_dataset, test_dataset = create_dataset(args) ptnCloudEmbedder = pointnet.CloudEmbedder(args) scheduler = MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_decay, last_epoch=args.start_epoch - 1) ############ def train(epoch): """ Trains for one epoch """ args.ext_epoch = epoch model.train() loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, collate_fn=spg.eccpc_collate, num_workers=args.nworkers, shuffle=True, drop_last=True) loss_meter = tnt.meter.AverageValueMeter() loss_ext_meter = tnt.meter.AverageValueMeter() loss_att_meter = tnt.meter.AverageValueMeter() acc_meter = tnt.meter.ClassErrorMeter(accuracy=True) confusion_matrix = metrics.ConfusionMatrix( dbinfo['classes'], ignore_label=args.metric_ignore_class) confusion_matrix_ext = metrics.ConfusionMatrix( dbinfo['classes'], ignore_label=args.metric_ignore_class) confusion_matrix_ext_epoch = metrics.ConfusionMatrix( dbinfo['classes'], ignore_label=args.metric_ignore_class) t0 = time.time() epoch_time = time.time() batch_time = AverageMeter() end = time.time() # iterate over dataset in batches for bidx, (targets, GIs, clouds_data, clouds_orig, edges_for_ext, fnames, ext_data, num_sp_list) in enumerate(loader): print('fnames: {}'.format(fnames)) t_loader = time.time() - t0 model.ecc.set_info(GIs, args.cuda) weak_label_mode_cpu, label_mode_cpu, label_vec_cpu, segm_size_cpu = targets[:, 0], targets[:, 1], targets[:, 2:], targets[:, 2:].sum( 1 ) ext_mask, extension_sub_list, extension_full_list = ext_data if args.cuda: label_mode, label_vec, segm_size, weak_label_mode = label_mode_cpu.cuda( ), label_vec_cpu.float().cuda(), segm_size_cpu.float().cuda( ), weak_label_mode_cpu.cuda() else: label_mode, label_vec, segm_size, weak_label_mode = label_mode_cpu, label_vec_cpu.float( ), segm_size_cpu.float(), weak_label_mode_cpu optimizer.zero_grad() t0 = time.time() print('num_weak_label/num_sp_all: {}/{}'.format( torch.sum(weak_label_mode < args.n_labels + 1), weak_label_mode.shape[0])) embeddings = ptnCloudEmbedder.run(model, *clouds_data) outputs, rnn_fea = model.ecc(embeddings) o_cpu, t_cpu, tvec_cpu = filter_valid(outputs.data.cpu().numpy(), label_mode_cpu.numpy(), label_vec_cpu.numpy()) # extension input = clouds_orig.cuda() edges_for_ext = edges_for_ext.cuda() ext_weak_label_cuda = torch.argmax(outputs, dim=1, keepdim=False) weak_label_cat = weak_label_mode weak_label_cat[ext_mask > 0] = ext_weak_label_cuda[ext_mask > 0] if (epoch > 0) and (epoch % args.ext_epoch_gap == 0): output1, weak_label1, output2, weak_label2, extend_idx, _ = extension_accum2( input, outputs, embeddings, weak_label_cat, edges_for_ext, th=args.extension_th, ext_max=args.single_ext_max) print('{}/{} ~ {:.2f} points with labels.'.format( outputs.shape[0], output1.shape[0], output1.shape[0] / outputs.shape[0] * 100)) print('extension points: {}'.format(extend_idx.shape)) else: extend_idx = torch.Tensor([]) output2 = torch.Tensor([]) weak_label2 = torch.Tensor([]) # loss mask1 = weak_label_mode != args.ignore_label outputs_valid1 = outputs[mask1, :] weak_label1 = weak_label_mode[mask1] loss1_cro = nn.functional.cross_entropy( outputs_valid1, weak_label1, ignore_index=args.ignore_label) ###### extension dropout # labeled points: outputs_valid1, weak_label1 labeled_idx = torch.nonzero(mask1).squeeze().long() # Nsp_label # previous extension points: if torch.sum(ext_mask > 0) > 1: pre_ext_outputs = outputs[ext_mask > 0, :] # Nsp_pre_ext pre_ext_fea = rnn_fea[ext_mask > 0, :] pre_ext_pseudo_label = torch.argmax(pre_ext_outputs, dim=1, keepdim=False) pre_ext_idx = torch.nonzero(ext_mask > 0).squeeze().long() # current extension points: if extend_idx.shape[0] > 1: cur_ext_outputs = output2 cur_ext_pred_label = weak_label2 cur_ext_idx = extend_idx cur_ext_fea = rnn_fea[extend_idx, :] # extension concat if (torch.sum(ext_mask > 0) > 1) & (extend_idx.shape[0] > 1): ext_outputs_cat = torch.cat((pre_ext_outputs, cur_ext_outputs), 0) ext_label_cat = torch.cat((pre_ext_pseudo_label.unsqueeze(-1), cur_ext_pred_label.unsqueeze(-1)), 0).squeeze(-1) ext_idx_cat = torch.cat( (pre_ext_idx.unsqueeze(-1), cur_ext_idx.unsqueeze(-1)), 0).squeeze(-1) ext_fea_cat = torch.cat((pre_ext_fea, cur_ext_fea), 0) elif extend_idx.shape[0] > 1: # only current extension points ext_outputs_cat = cur_ext_outputs ext_label_cat = cur_ext_pred_label ext_idx_cat = cur_ext_idx ext_fea_cat = cur_ext_fea elif torch.sum(ext_mask > 0) > 1: # only previous extension points ext_outputs_cat = pre_ext_outputs ext_label_cat = pre_ext_pseudo_label ext_idx_cat = pre_ext_idx ext_fea_cat = pre_ext_fea else: ext_outputs_cat = None ext_label_cat = None ext_idx_cat = None ext_fea_cat = None # compute the cluster center and the distances and then dropout with ratio if (ext_idx_cat is not None) and (ext_idx_cat.shape[0] > 20): ext_idxs_sample = [ ] # sampled id of each extension points in all the extension points unique_classes = torch.unique(weak_label1) ext_idx_idx = torch.Tensor( list(range(ext_idx_cat.shape[0])) ).cuda( ) # id of each extension points in all the extension points for i in range(unique_classes.shape[0]): sp = unique_classes[i] fea_label = outputs_valid1[weak_label1 == sp] # Nsp_label_class*13 fea_ext = ext_outputs_cat[ext_label_cat == sp] # Nsp_ext_class*13 ext_idxs = ext_idx_idx[ext_label_cat == sp] # Nsp_ext_class if (fea_ext.shape[0] > 5) & (fea_label.shape[0] > 0): num_retain = math.floor(fea_ext.shape[0] * args.ext_drop) cluster_center = torch.sum( fea_label, dim=0, keepdim=True) + 0.5 * torch.sum( fea_ext, dim=0, keepdim=True) cluster_center = cluster_center / ( fea_label.shape[0] + fea_ext.shape[0]) # 1*13 dis = fea_ext - cluster_center # Nsp_ext*13 dis = torch.norm(dis, dim=1) # Nsp _, idxs = torch.sort(dis, dim=0, descending=False) ext_idxs_sample.append( ext_idxs[idxs[:num_retain]].unsqueeze(-1)) elif len(ext_idxs) > 0: ext_idxs_sample.append(ext_idxs.unsqueeze(-1)) ext_idxs_sample = torch.cat(ext_idxs_sample, 0).squeeze(-1).long() ext_idxs_retain = ext_idx_cat[ext_idxs_sample] ext_output_retain = ext_outputs_cat[ext_idxs_sample, :] ext_fea_retain = ext_fea_cat[ext_idxs_sample, :] ext_label_retain = ext_label_cat[ext_idxs_sample] else: ext_idxs_retain = ext_idx_cat ext_output_retain = ext_outputs_cat ext_fea_retain = ext_fea_cat ext_label_retain = ext_label_cat if (ext_idxs_retain is not None) and (ext_idxs_retain.shape[0] > 2): lab_fea = rnn_fea[ labeled_idx, :] # M*352, including the previous extension points lab_lab = weak_label1 if lab_fea.shape[0] > args.max_labeled_att: ii = random.sample(range(lab_fea.shape[0]), k=args.max_labeled_att) lab_fea = lab_fea[ii, :] lab_lab = lab_lab[ii] lab_idxs_sample = ii if ext_idxs_retain.shape[0] > args.max_ext_att_loss: ii = random.sample(range(ext_idxs_retain.shape[0]), k=args.max_ext_att_loss) # ext_idxs_retain_sample = ext_idxs_retain[ii] ext_idxs_retain_sample = ii else: # ext_idxs_retain_sample = ext_idxs_retain ext_idxs_retain_sample = list( range(ext_idxs_retain.shape[0])) ext_fea = rnn_fea[ext_idxs_retain_sample, :] # N*352 # coupled attention outputs_att_lab = model.att_lab(lab_fea, ext_fea) outputs_att_ext = model.att_ext(ext_fea, lab_fea) loss_att_lab_cro = nn.functional.cross_entropy( outputs_att_lab, lab_lab) loss_att_meter.add(loss_att_lab_cro.item()) loss_att_ext_cro = nn.functional.cross_entropy( outputs_att_ext, ext_label_retain[ext_idxs_retain_sample]) loss_ext_meter.add(loss_att_ext_cro.item()) loss = args.loss_w1 * loss1_cro + args.loss_w2 * ( loss_att_lab_cro + loss_att_ext_cro) confusion_matrix_ext.count_predicted_batch( tvec_cpu[ext_idxs_retain.data.cpu().numpy(), :], np.argmax(outputs[ext_idxs_retain, :].data.cpu().numpy(), 1)) print('{} point extend. acc: {:3f}, macc: {:3f}'.format( ext_idxs_retain.shape[0], confusion_matrix_ext.get_overall_accuracy(), confusion_matrix_ext.get_mean_class_accuracy())) if extend_idx.shape[0] > 1: confusion_matrix_ext_epoch.count_predicted_batch( tvec_cpu[extend_idx.data.cpu().numpy(), :], np.argmax(outputs[extend_idx, :].data.cpu().numpy(), 1)) print( '{} point extend current epoch. acc: {:3f}, macc: {:3f}' .format( extend_idx.shape[0], confusion_matrix_ext_epoch.get_overall_accuracy(), confusion_matrix_ext_epoch.get_mean_class_accuracy( ))) # update the extension extend_idx = ext_idxs_retain.data.cpu().numpy().astype( np.int32) weak_label2 = ext_label_retain.data.cpu().numpy().astype( np.int32) num_sp_array = np.cumsum(np.array(num_sp_list)) for b in range(num_sp_array.shape[0]): if b == 0: sp_start = 0 else: sp_start = num_sp_array[b - 1] sp_end = num_sp_array[b] mask = (extend_idx >= sp_start) & (extend_idx < sp_end) if np.sum(mask) > 0: extend_idx_batch = extend_idx[mask] - sp_start extend_label_batch = weak_label2[mask] extension_sub_batch = extension_sub_list[b].astype( np.int32) # Nsp*2 extension_full_batch = extension_full_list[b].astype( np.int32) # N*2 extension_full_batch[extension_sub_batch[ extend_idx_batch, 0]] = extend_label_batch current_fname = fnames[b] np.savetxt(os.path.join( args.extension_dir, 'epoch_{:d}'.format( int(epoch // args.ext_epoch_gap)), '{}.txt'.format(current_fname)), extension_full_batch, fmt='%d') else: loss = loss1_cro loss.backward() ptnCloudEmbedder.bw_hook() if args.grad_clip > 0: for p in model.parameters(): if p.grad is not None: p.grad.data.clamp_(-args.grad_clip, args.grad_clip) optimizer.step() t_trainer = time.time() - t0 # loss_meter.add(loss.data[0]) # pytorch 0.3 loss_meter.add(loss.item()) # pytorch 0.4 acc_meter.add(o_cpu, t_cpu) confusion_matrix.count_predicted_batch(tvec_cpu, np.argmax(o_cpu, 1)) batch_time.update(time.time() - end) end = time.time() print( 'Batch {}/{} - loss {:.3f}/{:.3f}, acc {:.3f}, lr {:.3f}, Loader time {:.3f}, Trainer time {:.3f}, Batch time {:.3f}/{:.3f}.' .format(bidx + 1, len(loader), loss.item(), loss_meter.value()[0], confusion_matrix.get_overall_accuracy(), get_lr(optimizer), t_loader, t_trainer, batch_time.val, batch_time.avg)) t0 = time.time() if args.ext_epoch % args.ext_epoch_gap == ( args.ext_epoch_gap - 1): # a new extension folder need to be built shutil.copytree( os.path.join( args.extension_dir, 'epoch_{}'.format( int(args.ext_epoch // args.ext_epoch_gap))), os.path.join( args.extension_dir, 'epoch_{}'.format( int(args.ext_epoch // args.ext_epoch_gap) + 1))) return acc_meter.value()[0], confusion_matrix.get_overall_accuracy(), confusion_matrix.get_mean_class_accuracy(), confusion_matrix.get_average_intersection_union(), loss_meter.value()[0], time.time()-epoch_time, \ confusion_matrix_ext_epoch.get_overall_accuracy(), confusion_matrix_ext_epoch.get_mean_class_accuracy(), confusion_matrix_ext_epoch.get_average_intersection_union() ############ def eval(): """ Evaluated model on test set """ model.eval() loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, collate_fn=spg.eccpc_collate_test, num_workers=args.nworkers, drop_last=False) acc_meter = tnt.meter.ClassErrorMeter(accuracy=True) confusion_matrix = metrics.ConfusionMatrix( dbinfo['classes'], ignore_label=args.metric_ignore_class) test_time = time.time() # iterate over dataset in batches for bidx, (targets, GIs, clouds_data, clouds_orig, edges_for_ext, fnames) in enumerate(loader): model.ecc.set_info(GIs, args.cuda) # label_mode_cpu, label_vec_cpu, segm_size_cpu = targets[:,0], targets[:,2:], targets[:,1:].sum(1).float() weak_label_mode_cpu, label_mode_cpu, label_vec_cpu, segm_size_cpu = targets[:, 0], targets[:, 1], targets[:, 2:], targets[:, 2:].sum( 1 ) embeddings = ptnCloudEmbedder.run(model, *clouds_data) outputs, _ = model.ecc(embeddings) o_cpu, t_cpu, tvec_cpu = filter_valid(outputs.data.cpu().numpy(), label_mode_cpu.numpy(), label_vec_cpu.numpy()) if t_cpu.size > 0: acc_meter.add(o_cpu, t_cpu) confusion_matrix.count_predicted_batch(tvec_cpu, np.argmax(o_cpu, 1)) print('{}/{}-{} outputs: {}, acc: {}, macc: {}'.format( bidx, len(loader), fnames[0], outputs.shape, confusion_matrix.get_overall_accuracy(), confusion_matrix.get_mean_class_accuracy())) return meter_value(acc_meter), confusion_matrix.get_overall_accuracy( ), confusion_matrix.get_mean_class_accuracy( ), confusion_matrix.get_average_intersection_union( ), time.time() - test_time ############ def eval_final(): """ Evaluated model on test set in an extended way: computes estimates over multiple samples of point clouds and stores predictions """ model.eval() acc_meter = tnt.meter.ClassErrorMeter(accuracy=True) confusion_matrix = metrics.ConfusionMatrix( dbinfo['classes'], ignore_label=args.metric_ignore_class) collected, predictions = defaultdict(list), {} # collect predictions over multiple sampling seeds for ss in range(args.test_multisamp_n): test_dataset_ss = create_dataset(args, ss)[1] loader = torch.utils.data.DataLoader( test_dataset_ss, batch_size=1, collate_fn=spg.eccpc_collate_test, num_workers=args.nworkers) # iterate over dataset in batches for bidx, (targets, GIs, clouds_data, clouds_orig, edges_for_ext, _) in enumerate(loader): model.ecc.set_info(GIs, args.cuda) weak_label_mode_cpu, label_mode_cpu, label_vec_cpu, segm_size_cpu = targets[:, 0], targets[:, 1], targets[:, 2:], targets[:, 2:].sum( 1 ) embeddings = ptnCloudEmbedder.run(model, *clouds_data) outputs, _ = model.ecc(embeddings) fname = clouds_data[0][0][:clouds_data[0][0].rfind('.')] collected[fname].append( (outputs.data.cpu().numpy(), label_mode_cpu.numpy(), label_vec_cpu.numpy())) # aggregate predictions (mean) for fname, lst in collected.items(): o_cpu, t_cpu, tvec_cpu = list(zip(*lst)) if args.test_multisamp_n > 1: o_cpu = np.mean(np.stack(o_cpu, 0), 0) else: o_cpu = o_cpu[0] t_cpu, tvec_cpu = t_cpu[0], tvec_cpu[0] predictions[fname] = np.argmax(o_cpu, 1) o_cpu, t_cpu, tvec_cpu = filter_valid(o_cpu, t_cpu, tvec_cpu) if t_cpu.size > 0: acc_meter.add(o_cpu, t_cpu) confusion_matrix.count_predicted_batch(tvec_cpu, np.argmax(o_cpu, 1)) per_class_iou = {} perclsiou = confusion_matrix.get_intersection_union_per_class() for c, name in dbinfo['inv_class_map'].items(): per_class_iou[name] = perclsiou[c] return meter_value(acc_meter), confusion_matrix.get_overall_accuracy( ), confusion_matrix.get_average_intersection_union( ), per_class_iou, predictions, confusion_matrix.get_mean_class_accuracy( ), confusion_matrix.confusion_matrix ############ # Training loop for epoch in range(args.start_epoch, args.epochs): print('Epoch {}/{} ({}):'.format(epoch, args.epochs, args.odir)) # scheduler.step() _, acc, macc, miou, loss, epoch_time, ext_acc, ext_macc, ext_miou = train( epoch) if (epoch + 1) % args.test_nth_epoch == 0 or epoch + 1 == args.epochs: _, test_acc, test_macc, test_miou, test_time = eval() print( '-> [{}/{}] Train results as epoch: mIou/mAcc/allAcc/loss/time {:.4f}/{:.4f}/{:.4f}/{:.4f}/{:.4f} ' .format(epoch + 1, args.epochs, miou, macc, acc, loss, epoch_time)) print( '-> [{}/{}] Train extension results as epoch: mIou/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}/ ' .format(epoch + 1, args.epochs, ext_miou, ext_macc, ext_acc)) print( '-> [{}/{}] Test results as epoch: mIou/mAcc/allAcc/time {:.4f}/{:.4f}/{:.4f}/{:.4f} ' .format(epoch + 1, args.epochs, test_miou, test_macc, test_acc, test_time)) else: test_acc, test_miou, test_macc = 0, 0, 0 print( '-> Train accuracy: {:.3f}, \tLoss: {:.3f}, \tEpoch_time: {:.3f}' .format(acc, loss, epoch_time)) stats.append({ 'epoch': epoch, 'loss': loss, 'oacc': acc, 'miou': miou, 'oacc_test': test_acc, 'test_miou': test_miou, 'test_macc': test_macc }) if epoch % args.save_nth_epoch == 0 or epoch == args.epochs - 1: with open(os.path.join(args.odir, 'trainlog.txt'), 'w') as outfile: json.dump(stats, outfile) torch.save( { 'epoch': epoch + 1, 'args': args, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict() }, os.path.join(args.odir, 'epoch{}_model.pth.tar'.format(epoch))) if math.isnan(loss): break scheduler.step() if len(stats) > 0: with open(os.path.join(args.odir, 'trainlog.txt'), 'w') as outfile: json.dump(stats, outfile) # Final evaluation if args.test_multisamp_n > 0: acc_test, oacc_test, avg_iou_test, per_class_iou_test, predictions_test, avg_acc_test, confusion_matrix = eval_final( ) print( '-> Multisample {}: Test accuracy: {}, \tTest oAcc: {}, \tTest avgIoU: {}, \tTest mAcc: {}' .format(args.test_multisamp_n, acc_test, oacc_test, avg_iou_test, avg_acc_test)) with h5py.File( os.path.join(args.odir, 'predictions_' + args.db_test_name + '.h5'), 'w') as hf: for fname, o_cpu in predictions_test.items(): hf.create_dataset(name=fname, data=o_cpu) #(0-based classes) with open( os.path.join(args.odir, 'scores_' + args.db_test_name + '.txt'), 'w') as outfile: json.dump([{ 'epoch': args.start_epoch, 'acc_test': acc_test, 'oacc_test': oacc_test, 'avg_iou_test': avg_iou_test, 'per_class_iou_test': per_class_iou_test, 'avg_acc_test': avg_acc_test }], outfile) np.save(os.path.join(args.odir, 'pointwise_cm.npy'), confusion_matrix)