def __init__(self): with open('vocabulary-new.pkl', 'rb') as f: self.voc = pickle.load(f) url = 'static/' self.imlist = vocabulary.get_img_list(url) self.feature = vocabulary.get_feature_list(url) self.nbr_images = len(self.imlist) self.ndx = range(self.nbr_images) self.maxres = 15 self.header = """ <!doctype html> <head> <title>Image search</title> </head> <body> """ self.footer = """
# indx.db_commit() # # src = Searcher('/home/aurora/hdd/workspace/PycharmProjects/test.db', voc) src = Searcher('test.db', voc) # locs, descr = sift.read_feature_from_file(url+'ukbench00432.sift') # iw = src.voc.project(descr) # # index = range(0, iw.shape[0], 1) # # figure, ax = plt.subplots() # # ax.scatter(index, iw) # # plt.show() # # print 'ask using a histogram...' # print src.candidates_from_histogram(iw)[:10] # print 'try a query...' # print src.query(url+'ukbench00000.jpg')[:4] imlists = vocabulary.get_img_list(url) # images = imlists # print images # results = compute_ukbench_score(src, images) # print results nbr_results = 6 res = [w[1] for w in src.query(imlists[0])[:nbr_results]] plot_results(src, res) # test file match # imlists = vocabulary.get_img_list(url) # features_lists = vocabulary.get_feature_list(url) # files = [(w[-17:], d[-16:]) for w, d in zip(imlists, features_lists)] # print files