예제 #1
0
###################
# Create datasets #
###################
train = LibriSpeechDataset(training_set, n_seconds)
valid = LibriSpeechDataset(validation_set, n_seconds, stochastic=False)
train_generator = (whiten_downsample(batch)
                   for batch in train.yield_verification_batches(batchsize))
valid_generator = (whiten_downsample(batch)
                   for batch in valid.yield_verification_batches(batchsize))

################
# Define model #
################
encoder = get_baseline_convolutional_encoder(model_n_filters,
                                             model_embedding_dimension)
siamese = build_siamese_net(encoder, (input_length, 1))
opt = Adam(clipnorm=1.)
siamese.compile(loss=contrastive_loss, optimizer=opt, metrics=['accuracy'])

#################
# Training Loop #
#################
siamese.fit_generator(
    generator=train_generator,
    steps_per_epoch=evaluate_every_n_batches,
    validation_data=valid_generator,
    validation_steps=100,
    epochs=num_epochs,
    workers=multiprocessing.cpu_count(),
    use_multiprocessing=True,
    callbacks=[
예제 #2
0
                           pad=pad)

batch_preprocessor = BatchPreProcessor('siamese',
                                       preprocess_instances(downsampling))
train_generator = (batch_preprocessor(batch)
                   for batch in train.yield_verification_batches(batchsize))
valid_generator = (batch_preprocessor(batch)
                   for batch in valid.yield_verification_batches(batchsize))

################
# Define model #
################
encoder = get_baseline_convolutional_encoder(filters,
                                             embedding_dimension,
                                             dropout=dropout)
siamese = build_siamese_net(encoder, (input_length, 1),
                            distance_metric='uniform_euclidean')
opt = Adam(clipnorm=1.)
siamese.compile(loss='binary_crossentropy',
                optimizer=opt,
                metrics=['accuracy'])
# plot_model(siamese, show_shapes=True, to_file=PATH + '/plots/siamese.png')
print(siamese.summary())

#################
# Training Loop #
#################
callbacks = [
    # First generate custom n-shot classification metric
    NShotEvaluationCallback(num_evaluation_tasks,
                            n_shot_classification,
                            k_way_classification,